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Abstract

We propose a new framework for the analysis of functional properties of e-
services supporting the development of cooperative information systems.

The framework aims at extending and integrating different approaches from
planning, automatic verification and database theory, providing both a rich do-
main specification and a suitable operational semantics of the e-service contract,
on which we define functional consistency and adequacy properties. From the
modeling side, the proposed approach allows for specifying complex e-services
based on the IOPE paradigm (Input, Output, Preconditions, and Effects), in
which the static properties of the modeled system are specified using a Descrip-
tion Logic knowledge base, as assumed in Semantic Web applications. Moreover,
our framework enforces a minimal-change semantics for the axiomatization of
the update operator, supporting also for the specification of conditional and non-
deterministic e-service behaviors. It also includes the ability to reason about
update repairing strategies w.r.t. the domain constraints, thus allowing for
incomplete service specification.

On this foundation, we are able to formally define several interesting prop-
erties of services, involving accessibility, validity, and repairability of services.
From the computational side, we prove that, while checking the above formal
properties is undecidable in general expressive settings, in our framework such
properties are decidable. We prove this result by reducing the above tasks to
reasoning in the two-variable function-free fragment of first-order logic.

Moreover, we give special regards to service-specific features, such as, for
example, the emphasis on black-box encapsulation, the characterization of the
scope of service applicability (e.g., served user community), and the concept of
functional similarity, abstracting both from the actual service provider and the
concrete interface specification.

The proposed approach is especially suited for the design of integration so-
lutions among mutually autonomous organizations that agree upon the domain
specification language, e.g., e-government and business-to-business scenarios. It
enforces knowledge sharing about available functionalities and enables the im-
plementation of dynamic binding mechanisms for failure recovery and execution
customization, and the aggregation of functionalities by interaction mediators.
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CHAPTER 1

Introduction

If, says Zeno, everything is either
at rest or moving when it occupies
a space equal to itself, while the
object moved is in the instant,
the moving arrow is unmoved.

Aristotle, Physics VI:9, 239b5

1.1 Problem Studied

The Service-Oriented Computing (SOC) paradigm [ACKM04] has gained in re-
cent years a lot of interest from the industrial and scientific communities in
the field of information technology, in general, and in the design and imple-
mentation of information systems, in particular. This paradigm is based upon
the metaphor of service (or e-service) as a mean to totally encapsulate soft-
ware application features, in order to make them openly available to highly
decoupled clients, implementing a flexible machine-to-machine interaction and
building a complex network of dynamically interacting actors (service providers
and requesters). Such a kind of network is the milieu on which new applications
are built by assembling/composing available services (service orchestration and
synthesis) and users look for services suitable to their needs (service discovery
and dynamic binding)1.

A service provided in such a way should not only hide implementation details,
but also aim at offering a higher level of abstraction to the client, closer to the
end-user’s perception in terms of granularity of the system representation. In

1The most relevant implementation in this field is, of course, represented by the so-called
web-service (WS) communication protocol stack: it is an initiative mainly managed by the
World Wide Web Consortium (W3C) and many software vendors ([WS, BHM+04]). The re-
sulting specifications are essentially based on the XML language ([BPSM+06]) and associated
standards and Internet technologies, but the e-service metaphor can be easily adopted using
different middleware like CORBA ([OMG04]).
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CHAPTER 1 INTRODUCTION

other words, an e-service should be a software system that offers functionalities
oriented to the management of “real-world” resources (even using computer-
based tools), instead of a remotely accessible component that manages comput-
ing resources (e.g., database, documents, communication links, etc.). On the
other hand, there is a strong requirement on the well-foundedness of the service
contract specification between involved actors, like in other composition-oriented
software frameworks.

This paradigm covers many application scenarios coming out from the wide
availability of networking and distributed computing technologies, due to the
success of the Internet and the World Wide Web. In particular, it easily ad-
dresses integrated and cooperative information systems in the area of e-business
and e-government, but it is also well suited for mobile network users (m-service).

In order to adequately support the design and the implementation of a
service-oriented architecture, we need to devise formal tools or, more precisely,
to tune existing ones to cope with peculiar modeling issues of the e-service
paradigm.

Several approaches proposed in literature model e-services by reducing them
to their specific primitive constructs, in order to make it feasible to apply the
various developed techniques: however, such approaches often ignore the char-
acteristic features of e-services. In particular, they generally do not consider
that an e-service can be described at:

an “intensional” level where e-services are characterized on the basis of their
functionalities;

an “extensional” level where e-services are characterized on the basis of their
applicability contexts (i.e., the user population that can access to the pro-
vided service).

If the former is the typical aspect addressed in the field of computational se-
mantics and system/protocol verification, the extensional characterization is a
distinguishing feature of such a kind of technologies.

On the industrial side, we have noticed that current proposals are mainly
focused on non-functional aspects, but such approaches lead to authoritative
constraints that prevent from a fully exploitation of these solutions, raising a
market barrier. In fact, they are well-suitable only for such (large) subjects hav-
ing the ability of imposing their own models and protocols to the community (de
facto or de jure). This fact prevents other operators from investing into original
solutions, since they are not enough isolated w.r.t. external factors. Moreover,
the lack of a precise functional characterization, especially in a highly distributed
and autonomous environment, hides the equivalence/similarity relation among
elements, inducing to a useless proliferation of artifacts. It results into a high
level of complexity in the development and management of the system.

Consequently, we aim to address the implementation of system integration
solutions, especially suited for the fields of e-government and virtual-enterprise,
devising a model that allows the definition of e-service properties and capabilities
in a complex domain, having a well-founded semantic model characterizing the
enactment of an e-service.

Such a kind of framework should be abstract enough in order to capture only
functional aspects, leaving out details deriving from implementation and com-

2



CHAPTER 1 INTRODUCTION

munication issues, but taking into account the organizational elements related
to the extensional characterization.

In particular we are addressing a general problem in the characterization
and analysis of evolving complex structures: in other words, as we will show
in the following chapter, we need to cope with a dynamic system which state
and transition representation is often very complex. From a general perspective
this is a classical issue addressed in many fields from the database update to
the knowledge-based planning, and many results have been already applied to
the development of service-oriented applications, but, nowadays, we observe the
lack of a suitable setting allowing a system designer to analyze and verify some
foundational and useful properties.

In fact, the adoption of a highly expressive language as the First-Order
Predicate Logic (FOL) for modeling dynamic systems easily leads to face very
hard (or even unsolvable) problems in terms of automatic verification of formal
properties of e-services. On the other hand, less expressive formalisms, like for
example the ones based on propositional logic, are too weak to model success-
fully real-world e-service scenarios. So, in order to devise a more expressive
language for e-service functional modeling, while preserving the computability
of the associated reasoning problems, we turn our attention to the family of
Description Logics2 (DL). Such a class of logics (which are mainly fragments of
first-order logic) has been explicitly defined with the main aim of constituting
an optimal trade-off between representational abilities and computational prop-
erties of reasoning ([Var96]). We basically adopt expressive description logic
languages (e.g., ALCQI and ALCQIO) to describe the static world properties,
but since we need to cope with some dynamic, and non-deterministic, features
like updates, we need to extend the language adequately in order to formulate
our problems in terms of computable reasoning tasks, which are mainly focused
on static world descriptions. In particular, our proposal relies upon the de-
cidable fragment of first-order logic C2: function-free first-order predicate logic
with at most two variables and counting quantifiers.

In order to adequately support the system design and implementation with
semantically founded tools, we need to address the verification of several prop-
erties (from correctness to equivalence) in a dynamic setting in the presence of
complex domain languages and some source of incompleteness. These problems
are, in general, intractable from a formal perspective (i.e., undecidable), despite
removing some constraint can lead to an effectively addressable issue (e.g., com-
plex static settings with incomplete specifications), but, at the same time, not
completely satisfactory: hence we need to investigate the hypothesis of devising
a sort of eventually approximated solution that is able to cope with the whole
user requirement set.

1.2 Contribution

The main goal of this work is to design an e-service modeling framework that
allows for analyzing functional properties at a high level of abstraction, based on
a formal semantic characterization, in order to devise development and execution
support tools in the construction of service-oriented solutions.

2See [BCM+03] for an introduction.
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CHAPTER 1 INTRODUCTION

More specifically, in this work we present the following main contributions:

1. the analysis of semantic based properties of e-services, which turn out as
relevant in the development of a service-oriented solution in the field of e-
government and cooperative information systems, with a special attention
to correctness and equivalence analysis;

2. from the semantic side, the formalization of the dynamic model under-
lying a suitable minimal-change semantics of e-services according to an
operational paradigm, also including side-effects. Such a formalization is
based on a decidable fragment of first-order logic;

3. from the computational side, the results on the decidability and complexity
of the automatic verification of the above properties, even in the presence
of incomplete specifications;

4. from the logic side, we present some extensions of classical expressive
Description Logics in order to deal with complex role and dynamic con-
straints, introducing a conservative extension of a knowledge-base formal-
ization framework in the presence of updates.

The modeling approach proposed is able to deal with many dynamic fea-
tures of e-services, since it has been devised to capture as much as possible the
properties of an update operator acting on a complex world description. In fact,
many approaches proposed in the literature, as we show in the following, are
focused on the semantic characterization of e-services, but, they lack a suitable
operational semantics, even though they rely on powerful modeling languages,
as the ones used in the Semantic Web. This limitation shows up in the case
of many DL-based frameworks, currently adopted as foundation for semantic
service inventory and discovery (e.g., WSML [dBFK+05], OWL-S [MPM+04]).
In other words, while such approaches adopt expressive logics as formal foun-
dation, they usually apply a strong reification, so the interpretation structures
of such formalizations are indeed mapped on the possible activation bindings.
Roughly speaking, many approaches aim to logically describe the service invo-
cation, rather than the service execution. These static approaches result not
enough expressive for the analysis of service enactment properties, since they
ignore many aspects of the update operations carried out by a service, that are
ipso-facto a dynamic concern.

In this respect, we have devised a formal toolkit that in our aims should
support the system integrator performing typical design tasks, according to a
formal system validation paradigm. In other words, we have deeply analyzed
the formal correctness properties of a semantically annotated e-service, in terms
of its own contract. In our vision, a service is liable if it is always able to honor
its own obligation w.r.t. the client without violating any domain constraint,
considering both static and dynamic rules (the former ones restrict the class of
legal system states, while the latter ones limit the class of admissible system
state transitions), assuming that the client itself is operating correctly. Despite
this is a very common problem addressed in various investigation fields, no
completely satisfactory solutions are available, since it is very hard to adequately
tune the expressive modeling power w.r.t. the tractability of problem instances.
Moreover, in this scenario, some additional issues related to the incompleteness
of information or specification generally arise. So, the approach devised is able

4



CHAPTER 1 INTRODUCTION

to keep into account also an update repair strategy, and, differently from similar
proposals, it is decidable even in the presence of arbitrary domain specifications
(in the adopted language).

The analysis of formal consistency of a service specification has been em-
ployed to build a more complex framework that is able to support also other
typical activities in the construction of a service-oriented architecture. In partic-
ular, we have addressed the analysis of the adequacy of a service to accomplish
a given task, expressed by means of a user goal, as tool for semantic match-
making. Hence, we have analyzed the problem of service equivalence w.r.t. the
ability of a service to replace another one: we notice that this property is quite
useful in the implementation of a fault-tolerant system. We have also devised
an approach to service equivalence that is able to take into account also user
constraints.

Besides, we have extended the equivalence or similarity analysis in order to
deal also with extensional concerns, that we have remarked as a specific aspect
of e-services w.r.t. other component-oriented software approaches. In particu-
lar, we are able to compare the capabilities of e-services within a community
introducing some degree of abstractness regarding their coverage and, also, to
cluster similar services into templates.

The devised framework can express a significant fragment of the current
concrete Semantic Web languages employed in the specification of Semantic
Web-Service (SWS) applications and also in the design of complex information
systems as Object-Oriented and Entity-Relationship paradigms.

1.3 Thesis Outline

The rest of the document is organized as follow: in Chapter 2 we start defining
our reference scenario and analyzing some interesting related works among the
number of approaches proposed to deal with the SOC and SWS. In Chapter 3,
once formal tools employed in the rest of the work has been briefly introduced,
we provide the basic definitions of the various notions subsequently employed
to lay out the framework. In Chapters 4 and 5 we present the axiomatizations
and the related results of several kinds of e-services that we are able to model,
progressively increasing the specification language expressiveness. In Chapter 6
we point out some interesting properties arising in the construction of a service-
oriented computing solution such as matchmaking, discovering, compatibility
analysis and so on. In Chapter 7 we devise some language extensions in order
to deal with more complex and expressive constraint classes, involving also
dynamic aspects, extending results shown so far also to these new languages.
Finally, in Chapter 8 we illustrate our future investigation plan.

An extended survey of the state of the art in the field of Service-Oriented
Computing and related technologies is reported in appendix, including an index
of employed definitions and notations.

5



CHAPTER 2

Service-Oriented Computing

In this chapter we shortly discuss about the reference computing model devel-
oped on the idea of e-service and the more relevant approaches employed in the
specification, analysis and implementation of this kind of software system.

We pay a special attention to the modeling aspect of dynamic features in
order to characterize a suitable formal semantic and emphasize tools devised to
support the system design and integration.

2.1 The e-service computing paradigm

As observed in Chapter 1 there is a lot of interest, both from the research and
industry communities, on technologies based on the metaphor of “service”, since,
from many sides, this paradigm has been pointed out as a sort of foundational
tool to deal with the never-solved software integration problem.

It is worth noticing that any technology can be the “silver bullet” in a
such complex and heterogeneous scenario, but we can also observe that from
proposal devised in this field some interesting solutions and new issues have been
raised. Nevertheless, while the easy network accessibility has greatly increased
the number and variety of integration challenges and issues (opportunities ?),
extending also to small scale development contexts, it is trivial to observe that
the integration has represented so far the more critical, in terms of cost, time and
quality, aspect in the implementation of ICT solutions. Hence, as many vendors
and development communities are now almost committed in the definition of
feasible standard integration tools (e.g., languages, protocols, specifications and
so on), there is the need of many contributions from the research community to
cope with new issues raised (e.g., dependability, trading, on-the-fly agreement).

In fact, in this context many contributions from several research areas,
in particular Artificial Intelligence (Knowledge Representation and Planning),
Database Theory, Distributed Computing and Formal Validation, have come
together leading to innovative interesting approaches to the development and
management of complex software applications and large-scale cooperative infor-
mation system by the integration of loosely coupled elements.
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The Service-Oriented Computing can be seen as a computational model
([PG03]) based on the service metaphor as a mean to denote a functional el-
ement that can be easily accessed from a suitable environment without any
significant limitation deriving from heterogeneity of implementation technology
or organizational structure. In this context a software application or an in-
formation system can be treated as a community of interacting services that
cooperate in order to provide more complex services to other applications or to
the end-users. The computation is highly distributed in terms of physical and
organizational location of devices.

Some authors, as [RK03, Hof03, Sta03], denote as e-service the business
model characterized by the selling of, not necessarily related to information
and communication technologies (ICT), services by means of ICT infrastructure
(e.g., Internet/WWW) as an evolution of the e-commerce model ([LSAS00]),
assumed as a new family of factors of production. Literally, it denotes a service
delivered/accessed by electronic media.

In [MPC01], the term e-service has also been employed to denote a software
system element (e.g., a software component) that can be easily integrated into a
more complex system. Generally speaking, an e-service is an information system
element (possibly built by different components, depending on the granularity
of the analysis) characterized by the following key properties:

• it implements a specific business function or manages a specific business
domain object (i.e., by-function modularization and by-object modulariza-
tion according to [CLNS97]);

• it is agnostic w.r.t. the implementation technology/architecture, since it
realizes a strong and complete encapsulation of one or more (possibly)
pre-existing functionalities;

• it can be easily integrated into complex solutions as a basic building block;

• it can be employed to define intra and extra-organizational integration
links;

• it exposes its behavior as a kind of atomic task (possibly).

More specifically, we denote as web services or XML web services ([WS]) the
stack of open middleware standards ([BHM+04]) based on the XML language
([BPSM+06]) and other Internet-related protocols (mainly related to HTTP
[FGM+99]), independent from a particular vendor, strongly stratified (despite
some foundational elements are not completely defined yet), that enable us to
build a flexible integration of heterogeneous software systems, implementing a
typical case of e-service technology.

As web service is usually denoted also a web or grid (meaning an open
computational environment/community) of accessible and customizable services
([ACKM04]), by the virtues both of open flexible interfacing protocols (i.e., XML
web service stack) and of the availability of enhanced annotation, search and
management tools.

From this point of view, web services can be also considered as the last
evolution of the wrapping technologies addressing the encapsulation of end-user
services available on the World Wide Web (i.e., HTML form over HTTP) into a
software component enabling the replacement of the interacting client (i.e., the
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web browser) with another software system1. According to [HS04], the main
goal is to switch from the flexible human-machine interaction implemented by
the WWW to a flexible machine-machine interaction2. As consequence, there
is a strong need not only regarding the adoption of open and “light” interaction
protocol (w.r.t. other middleware technologies), but also the re-engineering of
application structure and development process.

In particular, the service-oriented architecture (SOA) is an approach to the
design and implementation of integrated enterprise applications (EAI) that
leverages on the e-service model. Generally speaking, it is an evolution of
the component-based development models or, in other words, of a new kind
of mega-programming technique ([TBB03, Sta02]). Following this perspective,
the development of software application does not only rely on the composition
of pre-existent modules (components or services), but, more specifically, on the
adoption of high level composition specification language (e.g., work-flow defi-
nition language) that allows to model in a more natural way business processes
supported by the enterprise information system (EIS), in order to reduce the
conceptual distance between specification and implementation.

Among various application contexts of this kind of technology, and in par-
ticular in the field of Cooperative Information Systems (autonomous and het-
erogeneous information systems that cooperate in order to achieve a common
business goal), a special role is covered by the business-to-business (B2B) in-
tegration ([KAJR03]). In this case and in its specializations (e.g., Business
Partner Integration, Virtual Enterprise, e-government), different organizations
(i.e., economic operators) adopt the service paradigm so that their own busi-
ness process can be encapsulated and they need to expose only the cooperation
interfaces to involved business partners. In this setting, the XML web service
stack acts as a sort of lingua franca among actors for both the specification and
the implementation of business protocols/conversations.

Another special class of service is represented by so-called mobile service
(m-service), that are strongly characterized by aspect related to user/provider
location and mobility properties3. As for the e-service, the term is also employed
to denote the related business model.

In the following, we consider the e-service as an integrable self-describing
software component/tool that is aiming to menage “real-world” resources (web-
service as paradigm), rather than simply an open-protocol integrable software
components (web-service as protocol).

A deeper analysis on service-oriented applications, the development process
and modeling issues is reported in Appendix A.

1As matter of facts many of large-scale publicly available web services are nowadays the
wrapping version of some existing end-user tools or legacy applications.

2Moreover, the ability to integrate heterogeneous software systems on the Web is a key
factor in the development of the so-called Web 2.0, that according to its inventors should
became a (new) tools for flexible human-human interaction. Please refer to [AKTV07] for a
short introduction and an analysis from the Semantic Web perspective.

3Moreover, we notice that stressing the concept of mobility of elaboration facilities leads
to the Grid Computing model. The relationships between these computational paradigms is
discussed in [MKF02].
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2.2 Formal approaches to service-oriented com-
puting

In this section we will analyze and discuss the most relevant approaches pro-
posed in literature to address problems concerning the modeling, design and
implementation of cooperative software systems based on service-oriented com-
puting paradigm.

We pay attention, in particular, to approaches oriented to the analysis of
dynamic features and integration issues, possibly keeping into account com-
plex domain specifications. Some other relevant approaches are discussed in
Appendix B and C.

2.2.1 Petri Networks

The Petri (or place/transition) network language family ([Pet62]) has been ex-
tensively employed to model business process (both intra and extra-organizational)
and to analyze their properties in particular adopting the work-flow modeling
paradigm ([vdA98]). In fact, this class of languages can easily deal with typical
constructs related to distributed/parallel task execution (e.g., join/fork, non-
deterministic behavior) and there exists a number of algorithms to check formal
properties of modeled system in terms of safety and liveness (e.g., presence
of deadlock, presence of race condition, termination) as well expected delivered
performance, despite most expressive versions are undecidable ([Jan95, Esp96]).

In particular, has been remarked that a service modeled according to DAML-
S and OWL-S methodologies (so-called service profile and service process speci-
fication components) can be instead easily interpreted in terms of process work-
flow and axiomatized using Petri Nets. On this foundation, a complex service
analysis formal toolkit has been proposed in [NM02]. Roughly speaking, the
devised approach translates the service process of the integrated service and the
service profiles of involved services into an equivalent Petri Net specification,
on which it is possible to formally check composition properties. The analysis
reports the computational complexity of property analysis problems w.r.t. the
process modeling language constructs allowed and it also provides a simulation
based technique to estimate expected performance delivered by the integrated
service implementation from declared SLAs of partner services.

A similar proposal is also presented in [Mar03], but in this case a more
complex completely decentralized architectural model is adopted and assuming
that every service is a module of a more complex cooperative process. A service
module is represented as a fragment of Petri Net s.t. its places are classified
as internal or external (input/output): the latter are also denoted by the type
of exchanged message (received or transmitted). A composition is specified
giving a connection structure that accordingly links input and output places
of various modules involved. A syntax-based compatibility relation is devised:
the compatibility is achieved if linked input and output places can deal the
same message type. Also a semantic-based compatibility property is devised
and analyzed: a service (i.e., process module) is usable in a composition if it
does not compromise the liveness and safety process properties.

A quite similar proposal is also discussed in [HB03], but a special atten-
tion is payed to the modeling and implementation of typical work-flow patterns
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([vdAtHKB04]) as, e.g., selection and discriminator that are rather relevant in
cooperative processes involving many distributed organizations using unreliable
communication channels. In order to characterize the behavioral equivalence of
services, a specific notion of bisimulation has also been devised: this approach is
also able to enforce a strong encapsulation level, since every service can expose a
public process specification that is bisimilar to the actual implementation (and
hence equivalent from the point of view of external actors) without providing
additional information about the private part.

2.2.2 Activity and Statechart Diagrams

The activity diagram and the statechart diagram ([HG97]) are very popular ap-
proaches to the formalization of work-flow and business process as well as to
the analysis and specification of behavioral requirements (i.e., they are both ex-
tensively used in UML [OMG07]). In fact, these languages can easily employed
also by business domain analyst without strong technical skills, they support a
convenient incremental specification design since they allow for hierarchical de-
composition of problems and they also allow to model the organizational impact
(i.e., task assignment/responsibility) of depicted process.

Starting from these observations, in [WW97], a general approach to par-
tition a state-chart diagram into orthogonal components, suitable of indepen-
dent, parallel and distributed execution, has been analyzed. A single central
orchestration process has been hence replaced by several distributed coordina-
tion processes that preserves the exposed behavior (at least in case of reliable
communication links). The key point of the proposed approach is that the
decomposition of the given complex process state-chart into orthogonal compo-
nents: such elements can be executed concurrently and hence can be distributed
to different providers, while the mapping between the original state-chart and
the one obtained from the integration of orthogonal components preserves the
homomorphism property w.r.t. the state-chart composition algebra operators.

Despite the approach has been devised to support business process reengi-
neering projects and distributed work-flow management system named as MEN-
TOR ([WWWD96]), it can be also employed as a tool to split a typical hub-
based orchestration process as in BPEL into a more distributed cooperative
protocol. In fact, the system SELF-SERV, described in [SBD03], leverages on
this principle to deploy the process orchestration deriving from the composition
of different atomic services among a community of coordination nodes employ-
ing some routing tables that are able to specify also state transition conditions
and not only message delivery paths.

This model has also been enriched in [MBM03] in order to deal with problems
introduced by the mobility aspect of m-services. The extension is based on the
distinction among business sites, as the organizations that deliver services, and
execution sites, denoting places where the computation is actually carried out
(i.e., the user smart-phone), and data binding.

Starting from this modeling approach, a planning strategy has been intro-
duced in [ZBD+03]: this solution essentially relies on the enumeration of pos-
sible execution plans and the selection of the optimal ones (w.r.t. a given cost
criterion) using Mathematical Programming techniques.

A service customization/personalization model based on user characteris-
tics/preferences is presented in [SBM+04]: it relies on the state-chart paradigm
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to specify the process schema, extending it introducing the possibility to specify
also for every task/activity the input/output parameter signature and data de-
pendencies. This approach assumes that information is stored in suitable XML
documents, defined using XML Schema, and that process condition/data bind-
ing expressions are defined using a language derived from XPath ([CD99]). Also
the user profile is represented using an XML document. The orchestration sys-
tem is defined on this foundation: it is fully distributed and customizable in the
sense that it is able to adapt the enactment according to user preferences and to
assign the execution of different tasks to various service providers assuming that
both the client and the coordinator can not be continuously accessible (i.e., in
the case of mobile accessing user). In order to implement the devised solution,
the employ of control tuples, derived from the Linda language ([ACG86]), has
been proposed to represent the process fragment of pertinence of each actor:
these tuples can be generated from a template process and inserted into the
tuple space of each involved service.

2.2.3 Web Service Componentization

The service paradigm is closely related to software modularization and reuse,
so that different approached leveraging on component-based design solution has
been adapted also to service-oriented application implementation.

In [YPvdH02, Yan03], is discussed the problem of componentization/modularization
of web services w.r.t. both the application design and the reuse and exten-
sion/customization of implementation elements. A language suitable to model
the service composition is introduced, in particular, it allows the designer to
specify:

1. the operation execution order;

2. the managed data dependencies;

3. alternative execution paths.

The model is also able to distinguish between service composition completely
specified in the design phase, partially specified allowing for dynamic service
provider binding and completely dynamic, generated according to the actual
enactment. Dependencies among atomic activities can be expressed both in
terms of control and data dependencies.

The model can assign a type to each service and assess the service compati-
bility w.r.t. the similarity/compatibility of respective types.

In order to support the reuse of service specifications and implementations,
the model also introduces a formalism, derived from object-oriented languages,
that is able to describe a service in terms of messages, operations and process
structure4, but it is also able to model inheritance relations among them.

Relying on this representation language it is possible to describe abstract or
partially specified services and also to formalize the reuse and the specializa-
tion of different constructs (e.g., message, execution process): the specification
language both allows for the extension of inherited class and the overriding of
superclass properties.

4It is a quite similar in the spirit to the mixture of BPEL, WSDL and XML Schema
languages currently employed in many applications.
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In [MPC01], using a similar approach, is addressed the problem of analyzing
the behavioral compatibility among services into a SOA: each service is defined
as a component based on a finite state automaton specified by a state transition
diagram annotated with guard conditions. Each transition is also characterized
by its input and output message structured types. In this scenario, a service is
compatible according to an external observer to each other that is able to pro-
duce the same execution logs in terms of observable automaton state transitions
and exchanged messages.

2.2.4 Process Algebras

The process algebras and the π-calculus ([Mil89, Hoa85, Mil93]) are a large fam-
ily of formal languages essentially developed to describe communication proto-
cols among concurrently running processes and to verify their properties.

Such kind of formalism relies upon the notion of behavioral type system
([IK01]) applied to model concurrent processes: this is an approach similar
to classical type systems generally used to describe formal data structures, but
it is able to deal with dynamic features of modeled object, providing a synthetic
abstract description. Roughly speaking, a process algebra allows to formally
describe the behavior of a class of (software) process in terms of the observ-
able input/output message flow on suitable communication channels with other
concurrents processes. From this description, several deductive procedures have
been defined to check formal properties of these behavioral types and their com-
positions5. The definition of complex/composed process is based on an algebraic
notation based on a set of suitable behavioral primitives (e.g, send or receive a
message, perform an action). As a classical type system, it is also possible to
assert containment relationships and to define generalization hierarchies.

Originally developed to support the design of complex communication pro-
tocols, the π-calculus and its variations has been successfully adapted to service-
oriented computing, assuming the various interacting actors are a kind of con-
current process. In particular, this model has been adopted in [MB03] as formal
base of an extended service interface description language derived from XLANG,
since, differently from other approaches that generally need to face complexity
and decidability issues, it allows to easily verify various formal properties (in par-
ticular of composed services, intended as a community of interacting concurrent
processes) providing a way to extend the operation signature with behavioral
attributes (e.g., constraints on operation activation sequences). In this scenario,
some limitations of this formalism, in particular the difficulty in the description
of internal behavior/properties, has turned out as a very interesting feature,
since it enables an approach based on a strong encapsulation, distinguishing
between “what” a process (i.e., a service provider) does and “how” it works.

In [CRR02], the π-calculus is employed to check formal properties, expressed
using Linear Temporal Logic (LTL) ([Pnu77]), of cooperative programs using
model checking techniques ([McM93]). In particular, it is introduced and dis-
cussed a notion of sub-typing based on the possibility of a process to simulate
(i.e., replace) another one.

A more specific approach is presented in [KvB03]: a language, named as
BPE-calculus, is designed to capture dynamic features of BPEL language using

5A process inherits the properties of its own class.
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a suitable behavioral type system. This type system has been encoded using
a process algebra that, as many other approaches in this field, simply ignores
details regarding message data structures. The proposed approach is able to
verify interesting properties (i.e., safety, liveness) expressed using LTL model
checking. As other approaches, also in this case the process equivalence is
defined w.r.t. the bisimulation. But differently from other similar proposals,
the effort devolved to reduce the conceptual distance between the formal and
the business languages should help the process analysis and re-engineering.

2.2.5 Concurrent Transaction Logic

This is a kind of modal logic expressly introduced in [DKRR98] to model work-
flow processes and to check their properties, that stems from an extension of
predicate calculus devised to reason about actions and updates ([BK93]).

This language is essentially based on the first-order predicate logic enriched
with two additional connectors (⊗ and |) used to represent serial and paral-
lel events and two modal operators (� and �) used to denote the execution
of an atomically isolated action or a conditional action. The system state is
represented as a relational structure (a ground term database) that is updated
during a work-flow enactment. In the CTR logic it is possible to define a spe-
cial kind of Horn clauses and, consequently, to introduce a logic programming
paradigm based on the SLD resolution adapted to this special language, follow-
ing an approach quite similar to Prolog. In this context, a work-flow is defined
by means of a logic programming goal without recursion that updates the state
of the system database. Given a work-flow specification accordingly encoded,
it is possible to check whether or not it satisfies several temporal/dynamic con-
straints (e.g., the possibility of a certain event occurrence, the temporal ordering
between different events): these techniques can be employed to verify the (ab-
solute) consistency of a specification w.r.t. a set of domain constraints or the
consistency of a given enactment and to find an action plan possibly satisfying
the constraints. In the case of a non-recursive goal specification s.t. also the
unique event property holds (i.e., a significant event must occur at most once
in any admissible enactment), the CTR verification algorithms are more effi-
cient than corresponding ones developed for standard symbolic model checking
([McM93]), since they do not suffer from the exponential blow-up of system
states.

In [DKP+99], an application of the CTR language to a virtual enterprise
scenario is discussed: it is a particular kind of B2B integration characterized
by extemporaneous and contingent agreements among actors. Consequently,
in order to implement an effective business process integration using the ICT
infrastructure, as well as the availability of suitable middleware, it is also re-
quired to define a formal agreement among the cooperating parts and to check
whether such a contract is compatible with each partner policy (i.e., it does
not break any security/privacy constraints). Adopting the CTR language, this
requirement can be implemented modeling the integration process work-flows
and checking the consistency w.r.t. the union of constraint sets of every actor.

The language has been further extended in [DKR04], allowing for explic-
itly modeling also operations performed by the business partner and its own
decisions. The resulting language (CTR-S) has been, in fact, designed to ad-
dress problems concerning the negotiation among potential partners, since each
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one has its own goals and it is possible that two actors have conflicting ones.
This language can be interpreted in term of Game Theory, assuming that a
cooperation work-flow is consistently defined if a global strategy exists and it is
compatible with agent constraints.

A further extension is presented in [RK07]: the reasoning approach is able to
deal with both control and data flows, supporting the service contracting (i.e.,
checking whether is possible to achieve a goal) and orchestration (i.e., computing
an operation scheduling to satisfy a constraint set).

2.2.6 Relational Transducers

Typical e-commerce applications, as many other“services” currently available
through the WWW, are a particular class of data-driven web applications, in
other words, the navigational structure of the web is strongly tied to the system
data model (i.e., the relational schema) and user operations can be described in
terms of update of the system database contents (CRUD primitives). This model
can be generalized to the case of e-service applications (i.e., service provider)
considering the application itself as a complex service exposing several primitive
operations: the client uses these operations to access the service.

In order to model and analyze the behavior of this class of software systems,
the notion of relational transducer has been introduced in [AVFY98]: it is a spe-
cial kind of automaton s.t. its inputs, outputs and internal state are represented
in terms of relational schemas and not as an alphabet as in the case of traditional
finite state automata. A relational transducer reads its input as a set of tuples,
updates accordingly the state of the internal database (i.e., transaction), writes
the output also as a set of tuples and maintains a log of performed operations.
The behavior of a relational transducer is defined using a set of rules and it
is quite similar to an active database (i.e., trigger). In particular, using a spe-
cial type named as SPOCUS transducer (semi-positive outputs and cumulative
state), showing nice computational properties, it is possible to define various in-
teresting problems as: the verification of the equivalence/containment between
automata, the log validity checking w.r.t. a given specification, the reachability
of a system state and the verification of a set of temporal properties (i.e., the
satisfiability of domain temporal constraints).

In the general setting, these problems turn to be semi-decidable, however
([Spi00, DSV04]), in the case of SPOCUS transducer, limiting the expressive
power introducing some additional restrictions (e.g., number of variables used
in the rule specification, maximum size of the input message queue) it is possible
to check properties defined using a temporal logic as LTL or Computational-Tree
Logic (CTL) ([BAMP81]).

2.2.7 Multi Agent Protocols

In the field of multi-agent software systems the e-service paradigm can be con-
sidered as a way to specify the interaction protocol among agents or, in other
words, an abstract behavioral specification implemented by means of a software
agent ([BHM+04]).

While the traditional XML web service model assimilates the interaction
among components/actors as remote procedure calling, in this case it is more
convenient to assume that a conversation among autonomous entities, sharing
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knowledge, resources and abilities, takes place exchanging messages. Generally,
comparing agent-related specification languages and XML web service specifi-
cation standards, it turns out that the latter ones are not enough expressive to
adequately model the service/agent behavior.

In [Wal04], a multi-agent protocol, named as MAP, is introduced: it is
employed to specify the conversation specification among cooperating services
adapting the model defined in [FIP99]. This language, essentially, allows to
describe the computing process implemented by each agent and the interaction
with other ones in terms of messages sent and received. It also allows to dis-
criminate roles covered by agents in different conversations and offers primitive
constructs that are able to model parallel execution flows, decision point, iter-
ation and sub-routing call. A procedure to translate an arbitrary specification
in this language into the PROMELA language is also devise: PROMELA is
the input language used by the model checker SPIN ([Hol04]) that implements
various verification algorithms and it is able to verify if a given system specifi-
cations is consistent w.r.t. a set of constraints expressed in LTL: in particular,
in this case, the problem of protocol consistency is addressed in terms of conver-
sation termination ([CS01]). Adopting this approach it is possible to ensure the
absence of deadlock, starvation, infinite recursions and synchronization errors.
In order to make the problem feasible in terms of computational complexity,
a simplification of the input is required: essentially the structure of exchanged
data is ignored.

Another interesting approach based on the application of model checking
techniques to the verification of formal properties of software agents imple-
menting web services is devised in [PR04]. Agents are described as extended
finite state automata that allow for internal state variables and complex guard-
condition on transitions: they can be reduced to programs in transactional
logic having as models sequences of states, represented as databases. Properties
are formalized in a generalized linear temporal logic (GLTL), that is able to
predicate about both path and state characteristics, as the specification of the
composed process work-flow: it is essentially encoded as a set of additional con-
straints that restricts the domain of admissible computations. The proposed
approach is also able to deal with multiple concurrent instances of modeled
processes and to verify properties of an enactment set.

The multi-agent paradigm has been also applied to the definition and the
implementation of the middleware and network environment in order to provide
a family of meta-services (intended as service that manage the service-oriented
application environment itself). In [MKY04], an architecture for the deployment
of service-oriented applications is presented. It relies on three kinds of software
agents:

master service agent, delegated to the management of available computing
resources, to the instantiation of required elements, to the control of ac-
cesses and authorizations;

composite service agent, that coordinates orchestrations among different ser-
vice agents served by the master service agent;

service agent, that implements capabilities involved in the provisioning of a
specific service.
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Speech Act

In [AGP03], an approach based on the speech-act paradigm has been proposed
in order to enrich the interface description language of XML web services. As
previously remarked, the standard language for the specification of web service
interface WSDL lacks many features required to adequately state properties of
conversational services or, in other words, that implement an enactment through
a complex message flow between client and server. Roughly speaking, WSDL
has been initially devised for design simple stateless services with simple mes-
sage pattern (e.g., request/response, asynchronous request) and it is unable to
express complex constraints involving multiple message flows/operations. On
the other hand, the standard multi-agent conversational specification model
([FIP99]) allows to formalize as flow diagram exchanged message sequences be-
tween agents during a conversation session in order to specify only admissible
conversation patterns. Since this approach cannot be directly employed on the
standard XML web service architecture, because of its design restriction, an
enhanced version of such services is devised: essentially the server node is able
to keep track of the conversation state and it dynamically replies to the client
specifying the set of admissible reply messages, limiting the search space ac-
cordingly. Generally it is required a degree of user intervention to control the
client behavior: since the number of alternatives is minimized, it became more
feasible than in the traditional approach.

Moreover, choreographic-based modeling approaches as WSCI ([AAF+02])
provides a quite similar mechanism to describe the service access protocol, but
in the latter case the protocol specification is statically defined as the interface
structure at design-time, while in the former it can dynamically evolve during
a conversation.

Commitment Protocols

Another technique deriving from solutions devised for multi-agent systems is
presented in [XS03]: it is based on the application of commitment protocols
that are able to characterize, in the context of a multi-agent interaction, the
commitments that every part has taken. More specifically, these protocols are
able to model that a part/agent is committed w.r.t. another one to assure that
a given condition is satisfied. In this scenario, an agent can play a role if it is
able to take a specific set of obligations. According to this modeling paradigm,
it is possible to define some relevant commitment patterns that can be used to
classify general interaction kinds among agent (e.g., acceptation, notification,
resign, solicitation). These patterns can, hence, encoded into suitable CTL ax-
ioms obtaining a constraint set that a legal interactions must satisfy. Assuming
that the agent behavior is represented using a statechart diagram, it is also pos-
sible to reduce the conversation consistency verification problem to the model
checking of this structure w.r.t. the CTL axiomatization.

2.2.8 Conversational Specification

In [BFHS03], a conversational specification model has been devised allowing for
the description of the behavior of a community of interacting services. In this
approach, a composition schema (ec-composition and ec-schema) is essentially
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the description of cooperating processes (peer) connected by means of unidirec-
tional asynchronous communication channels that route messages to network
peers. Every peer in this model has an input queue that stores incoming mes-
sages from other network peers: when a message is peek from the queue it is
processed according to the peer application rules updating the automaton state
and eventually emitting new messages to other peers. In order to characterize
the global system behavior, a special node, acting as an observatory (so-called
watcher), has been introduced: it is able to monitor every communication chan-
nel and to log exchanged messages. According to this approach, the specification
of a service composition is a language on the alphabet of message types that
denote the set of admissible message sequences observed by the watcher.

Assuming that peers are implemented as Mealy automata ([HU79]), it is also
possible to state the following properties:

1. given any arbitrary composition structure and automata specification the
resulting language is context-sensitive;

2. if the automata input queue size is bounded, the resulting language is
regular;

3. given any regular language, it is always possible to define a composition
that realizes it;

4. the verification of arbitrary properties, encoded in LTL, of ec-compositions
is undecidable assuming unbounded queue size ([HBCS03]).

Since this model does not require any central orchestration node (excepting from
the watcher, but it is merely a formalization element and it can be implemented
as a distributed system too) it is very suitable for peer-to-peer integration ar-
chitecture.

In [FBS04a], the conversational specification model is applied to the anal-
ysis of XML web services integrated using a BPEL orchestration specification.
Moreover, the peer representation language has been also extended, introducing
guard conditions on automaton transition expressed using variables bounded
to internal state and message contents. This approach, enriched with tech-
niques presented in [FBS04b], is able to model the service composition keeping
into account also stored and exchanged data and not only the type specifica-
tion. In particular, there is the assumption that exchanged data messages are
based on XML, while branching/guard conditions are expressed in XPath. The
BPEL/WSDL specification is translated using a provided algorithm into an
equivalent PROMELA specification: it can be processed using a model checker
to verify formal properties expressed in LTL6. An interesting synchronization
property among peers is also discussed: in the case of synchronizable peers
the verification of arbitrary properties also using unbounded length queues is
decidable since the composition schema can be reduced to an equivalent one
without queues (sc-configuration). A set of sufficient conditions that ensure the
synchronization of the composition given properties of involved peers is also
devised.

6A similar approach, but based on WSFL, a service orchestration specification language
superseded by BPEL, and restricted only on data dependencies, ignoring data processing
issues, is described in [Nak02].
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An approach to the automatic composition synthesis is discussed in [BCD+03].
The adopted representation model is based upon the finite state automata
paradigm to describe both the available services, that can be included in the
composition (i.e., service community), and the required composition target. The
bind among different automata (services) is expressed on the base of a common
message alphabet that represents possible actions: every agent agrees on the
meaning of these atomic operations (i.e., the operational semantics). An au-
tomaton can both require and perform an action: a requiring-only automaton is
a client. In this framework, given an extended Mealy automaton specification as
composition target and a service community, it is possible to compute a broker
Mealy automaton using an algorithm based on the Deterministic Propositional
Dynamic Logic (DPDL) inference. This automaton is able to interact with a
client described as the target automaton, sending and receiving messages with
other ones during the client request processing activity7. In other words, the
target specification is the description of the client behavior: the synthesized
broker implements this protocol using available services in a coherent manner
both w.r.t. the client and service specifications (e.g., when the broker is in a
final state also involved services are in corresponding final states). An extended
model that is also able to deal with incomplete client specification (i.e., a non-
deterministic FSA with don’t-care transitions) has been devised in [BCD04].
Moreover, in [BCD+05], a characterization of atomic operation semantics is
also provided: it is based upon the notion of database update. In this case
the service community must share a common domain model expressed using a
relational schema expressing available operations in terms of update statements.

2.2.9 Situation Calculus

The situation calculus ([Rei91, MH69]) is a foundational approach in the area
of the knowledge-based planning and it can be employed to solve a number of
task in the implementation of service-oriented applications as matchmaking and
composition.

The Golog ([LRL+97]) is a logic programming language based on the situa-
tion calculus paradigm: it has been extended in [MS02] to deal with the complex
service composition as an incomplete information planning problem. According
to this proposal, available services are essentially atomic operations that the
planner can use to define an action plan able to achieve the user goal In par-
ticular, preconditions and effects of actions are represented using the DAML-S
model, of which a suitable axiomatization in situation calculus has been devised.
The composition problem is defined according to the following assumptions:

1. there exists a collection of generalized program templates that describe a
family of possible processes;

2. there exists a community of services provided by different agents described
as (conditional) operations with preconditions and effects;

3. the user selects a program template and submits the composition target
as a set of constraint on the resulting action plan and on the final system
state;

7The reference architecture model is essentially hub-and-spoke.
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4. the Golog interpreter runs over the specification executing the given tem-
plate, binding the abstract actions (i.e., service activation) to actual provider
according to enactment data, user input and information obtained by sens-
ing.

The Golog interpreter is employed two times: as off-line planner and as com-
position orchestrator, differently from other approaches that require an on-line
planning. This solution is feasible under the assumption that information gath-
ered during the off-line planning are enough stable and that performed actions
cannot alter the global system state:

1. during the off-line planning the world-altering actions are merely simu-
lated, while activable sensing actions are performed in order to acquire
information needed to instantiate the program template into a suitable
(conditional) action plan;

2. the conditional plan is hence executed monitoring the preconditions satis-
faction and the stability of assumed conditions, in case they are no more
valid the on-line planner is reactivated to look for a new suitable schedul-
ing if any.

In this context, two properties of resulting Golog programs are introduced:

knowledge auto-consistent programs, that cannot fail because it is impos-
sible to obtain required information to accomplish the task by sensing
actions;

physically auto-consistent programs, that cannot fail because it is impos-
sible to execute an action required to achieve the goal.

We point out that this solution is able to support a complex service orchestration
but not the synthesis, since it assumes that the program structure (the template)
has been a priori defined.

An alternative, and general, approach is instead based on the Process Spec-
ification Language (PSL) ([S+99]). It is a very expressive process specification
language integrating both the first-order predicate logic and the situation calcu-
lus: it is extensively used as a design/documentation tool, but it is too expressive
to be employed using (nearly) automated reasoning techniques.

2.2.10 Action Description Language

The problem of the validation of a work-flow specification in case of incom-
plete information is addressed in [GTL00]. This is typical scenario of intra-
organization cooperation (i.e., B2B integration) that is also interesting in the
case of e-services, since the strong encapsulation approach limits the available
information.

In particular, it is impossible to analyze at design-time every admissible
execution scenarios, since many information can be accessible only during the
execution itself. To cope with these issues, the adoption of an action description
language derived from A ([GL93]) is devised: the system state is described using
a predicate alphabet, while world-altering and knowledge-producing actions are
distinguished according to an approach common in the planning system design.
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The language is also able to model asynchronous events and exceptions. On
this foundation, it is possible to define a work-flow specification as a collection
of rules and a user goal as a collection of constraints on the system state and to
check if the work-flow is compatible with the goal achieving. In order to deal
with incomplete information, a three-value logic is employed.

2.2.11 Hierarchical Task Networks

In [WSH+03], a system designed to build composed e-services based on hierar-
chical task network is described.

In fact, this paradigm is quite similar to the process-model defined in the
standard DAML-S and OWL-S, as well as in BPEL, and it also possible to
reduce the composition problem to a hierarchical planning instance. In this case,
the action plan is computed considering the concept of task/activity instead of
system state. The atomic service descriptions are used to define invocation
preconditions and execution effects of basic operators, while tasks or complex
methods can derive their constraints in a bottom-up way considering properties
of their composing elements. Given such a kind of specification, the hierarchical
planner is able to coordinate atomic services implementing the required complex
service.

Compared with other planning systems, hierarchical planners as, e.g., SHOP2
([NMAC+01]), despite their reduced expressive power (i.e., concurrent actions
and conditional outcomes), exhibit generally better performance with limited
computing resources.

In [Ler04], the hierarchical task decomposition paradigm is employed to
implement a process analysis and verification suite. In particular, the process
work-flow is expressed using the Little-JIL language: it is essentially based
on the hierarchical task decomposition and on the attribution of activities to
a community of interacting agents. Given this process representation, it can
be translated into a collection of finite state automata (Finite State Process)
to verify liveness and safety properties using the model checker system LTSA
([KM06a]).

2.2.12 Estimated Regression Planning

As other planning techniques, also the estimated-regression planning approach
has been extensively and successfully employed to address many issues arising
in the implementation of service-oriented applications.

For example, in [McD02], a reduction of composition problem to planning is
presented: an algorithm is devised to translate a service composition problem
instance allowing for processing it using a partial-order planner ([RN95]). The
planner is employed to generate a collection of conditional action-plan relaxing
the closed world assumption. The problem formalization essentially gives an
axiomatization of the message exchange among agents, while sensing actions
are represented using a reification of modal operator K. However, the model
employed to represent both the system state and actions in this family of tools,
as the PDDL ([McD98]) language, are not generally enough expressive to deal
with complex data structures involved in the e-service specification (i.e., XML
Schema). In order to cope with contingent events, an on-line planner is also
introduced to compute alternative scheduling when needed. The system has
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been prototyped implementing a translator from the DAML-S specification of
available and target services into a PDDL specification.

An alternative approach is discussed in [Pee03b]: the solution devised to the
computer-aided service synthesis is based on the following steps:

1. the application domain is defined using a theory in PDDL;

2. a subset of relevant services are selected from a catalog using techniques
derived from the component-based computer-aided software design;

3. selected services are encoded according the PDDL domain specification;

4. the initial state and the goal are specified;

5. the planning problem instance is defined and solved using the planner
obtaining a suitable strategy in terms of available services.

Differently from other planning-based approaches, in this case there is a complete-
information assumption: in other words, sensing actions are ignored.

A more interesting alternative, based upon a non-deterministic version of
PDDL, is presented in [APY+02]. In this case, the non-determinism is employed
to define action-plan that are able to deal with erroneous events. This approach
requires that the composition target is expressed as a planning problem instance
annotated with additional execution constraints in a version of CTL according
to user preferences. Given this specification, the planner is employed to compute
some feasible scheduling, that are bound to available service provider and filtered
according to additional constraints.

The service composition problem is addressed in [CST03] as a planning ap-
plication assuming that available operators are only partially instantiated, since
they are specified in terms of data domain and not in terms of values (i.e.,
service operation signatures), while the system state is described in terms of
exchanged messages. According to the devised approach, the composition goal
is expressed in terms of achieving a suitable message flow w.r.t. a set of con-
straints. The problem instance is solved using a backward-chaining planning
algorithm enriched with type-checking operations to enforce compatibility poli-
cies on exchanged messages.

2.2.13 Description Logics

The family of Description Logics has been applied to deal with several aspects in
the service-oriented computing, since they exhibit a high expressive power, nice
computational properties and they are also the formal foundation of a relevant
fragment of the Semantic Web ([BLHL01]).

In particular, in this scenario, the language DAML-S, and its evolution
OWL-S and also alternative proposals as WSMO/WSML ([RKL+05, dBFK+05]),
is the main tool employed to describe a semantically enriched service according
to the notion of service profile and service model. The former annotates the
operation signature according to the IOPE paradigm expressing service input,
outputs preconditions and effects w.r.t. a domain ontology, while the latter
allows to specify the process model of a complex service in terms of atomic
ones. This language has been widely adopted in different solutions to the ser-
vice composition problems (e.g., planning-based ones), but it has became the
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main reference model in matchmaking applications, since, adequately encoding
service discovery requests, it is possible employ DL inference algorithms to check
if in a service catalog there exists a suitable candidate ([PKPS02]).

Generally speaking, languages underlying the Semantic Web (i.e., SHOIN (D)
or SHIF(D)) are indeed very expressive and corresponding inference problems
are quite complex, despite in the average cases as well as in simulation and test
scenarios description logic reasoners perform in acceptable manner. However, it
is also possible to employ less expressive language as CLASSIC ([DNDSDM03])
s.t. the inference problem can be solved in polynomial time8. Another ap-
proach is the system LARKS ([SKWL99]) that improves the retrieval perfor-
mances adding a preliminary filtering step done using linguistic arguments (i.e.,
classification taxonomy).

In [BK02], an alternative approach is presented: it is essentially based on
an entity-relationship model enriched with the role transitive closure used to
express the service model and to perform the service matchmaking given user
requirements. The matchmaking is implemented in terms of evaluation of logic
programs expressed in Datalog¬

In [PC03], a formalization approach to the service model is presented: it is
based upon a first translation from the π-calculus to a modal logic and hence
a second translation to an description logic extended with parameterized roles.
The devised system enable to separate aspects related to the service description
from ones related to service interaction using specific process algebra constructs
as message and communication channel. It is suitable for solve matchmaking
problems as well as to verify process formal properties as safety and liveness.

Another class of modeling approaches based upon DLs essentially oriented
to address matchmaking problems is presented in [GMP04]. As previously dis-
cussed ones, this is essentially a static approach since it is focused on the de-
scription of service entailments not on the world states (i.e., the interpretation
structure is mapped upon possible actual instantiation of service activations) but
it allows for a domain specific knowledge in the sense of Semantic Web. The
most interesting contribution is the distinction between service variety (i.e., the
extension of service instance set) due to incomplete knowledge (i.e., multiple
models of a given theory) and to intended diversity (i.e., multiple instances in
a given model). While the latter is a goal of a service publisher (i.e, describing
a service that is able to accept multiple client requests) the former is generally
a consequence of poorly defined domain specification. Stemming from these
concepts, also service availability and coverage concept has been introduced to
denote the applicability of a service to deal a given class of requests. Match-
making problems are reduced to various forms of reasoning tasks, despite some
kind of constraints/features are not actually addressable since using only a DL
or a two-variable fragment of first-order logic would seem to be to restrictive.
Moreover also a feasible specialization ordering relation among services, given
a client requirement, is provided. Also this relation is reduced to an inference
problem in expressive DL.

This approach has been extended in [GM05, GMP06], in order to deal with
the incomplete knowledge specification issues by means of an auto-epistemic
extension of DL implementing a local closed world reasoning (i.e., assuming

8In most interesting applications analyzed so far, the problem size is essentially related to
the schema size, while extensional aspects are ignored.
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that for a “local” portion of the model the closed-world assumption holds).
Another extension has been devised in [d’A07], introducing a partition among

constraints: hard constraints are features that a service must necessarily have,
while soft constraints are features that a service should preferably have. Start-
ing from this distinction a more refined ranking algorithm, also leveraging on
DL reasoning, is provided.

In [BLM+05a], a general approach to the update of DL extensional knowl-
edge bases is devised: it relies upon a suitable extension of the language includ-
ing some operators from the Hybrid Logics ([ABG+07]). Despite it is complete
action formalism, it has been applied to the analysis of properties of semantics
e-services, in particular considering the role of the domain knowledge and in-
complete specification. The proposed approach, in fact, introduce an update
repair mechanism that is able to complete the service effects with additional
updates in order to obtain a resulting world state that is consistent with a set
of constraints (i.e., a TBox). In presence of an expressive description logic lan-
guage, the problem is decidable only restricting the specification to some special
classes of TBoxes (i.e., acyclic or definitorial). It has been employed to reason
about formal properties of e-services in [BLM+05b].

Another approach, essentially stemming from [BLM+05b], has been devised
in [WL06]: while the restriction on acyclic TBoxes is preserved, it is allowed for
a more expressive DL language. In particular the action reasoning framework
is extended to the SHOIN+(D)∗ language ([HPS03]) that is able to specify
complex role assertions and also to deal with concrete domains. On this foun-
dation, a matchmaking problem, restricted to preconditions and effects, is de-
fined considering different matching conditions and providing an inference-based
algorithms. An extension to the whole IOPE paradigm is feasible integrating
other approaches.
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Definitions

In this chapter we present and discuss the preliminary assumptions on which
the devised approach relies, and formally introduce the primitive constructs
employed in the framework, assuming that the reader is familiar with first-order
logic and computational complexity analysis.

3.1 Preliminary Assumptions

As discussed in Chapter 2, despite many works dealing with the problem of mod-
eling and managing e-services, both from the technical perspective and from
the formal one, the approaches proposed so far are not entirely satisfactory,
since they generally ignore the semantic problem or delegate it to the specific
application [LH03]. Such an approach could lead to inconsistency problems,
as recently pointed out in the related field of Semantic Web in [HPPSH05],
on which the main formal e-service languages rely. Given a knowledge rep-
resentation language (i.e., a Semantic Web language), it is always possible to
build a classification model of available services (a so-called service ontology),
since we can define, using language constructs, the various service classes (e.g.,
payment services, reservation services, information services) specifying their re-
lationships (e.g., generalization, dependency, refinement, instantiation). It is
worth noticing that such a kind of ontology is interpreted over the universe of
possible services without specifying their own semantics, unless “suggesting”
an intuitive meaning through element names. There are different approaches
(e.g., [MBE03, DNDSDM03, PKPS02, SdF03, LH03, GMP06]) based on this
assumption, which rely upon knowledge representation tools, including Descrip-
tion Logics, to deal with concept taxonomies, while essentially ignoring dynamic
features. Generally speaking, the “semantics” of these approaches is based on
the instantiation of a service activation (i.e., a service enactment is a set of pos-
sibly ground assertions or facts). While this assumption can be quite adequate
to support matchmaking and discovering applications, it is infeasible for more
complex tasks as formal validation or automatic synthesis.
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The considered computing environment is a community of distributed soft-
ware agents that provide or request functionalities exposed by means of e-
services in order to implement cooperative integration, as it is generally as-
sumed in service-oriented architectures (e.g., [ACKM04, PG03]). As previously
observed, this is a general integration model that is applicable in many business
scenarios like:

• automatic service customization for mobile and extemporary users;

• cooperative information systems for e-government solutions [CNI05b, CNI05a,
CNI05c, Peo05, G4B04];

• service-oriented integration in enterprise information systems (EAI);

• business partner information system integration and e-business coopera-
tive solutions (e.g., B2B, virtual enterprise network, digital districts).

Such a kind of system integration pattern is generally denoted as service-oriented
integration (SOI), since it leverages on service encapsulation properties to de-
couple the implementations. Services are generally intended as transactional
operations (not the in database sense, however), managing the system state
according to requestor directives and provider decisions.

Given a service-oriented computing environment, we are mainly interested in
the following areas, pointed out in various development and execution scenarios:

1. the semantic specification and inventory of available services (service direc-
tory), supporting service matchmaking upon semantic specification (ser-
vice discovery), tracing service specific features;

2. the analysis of general semantic services features like: consistency w.r.t.
knowledge domain/constraints, instantiability, functional equivalence, re-
placeability, etc.;

3. the analysis of specific service features relevant to a client or a mediator
aiming at achieving a particular goal or offering a new enhanced function-
ality to the community by aggregating available services into a complex
process.

In order to deploy solutions suitable for end-user’s needs in such kind of sce-
narios, exploiting features of loose coupling composition approaches as proposed
in [Kay03], among various technology enablers (e.g., agreed standards, reliable
middleware, open protocols), we need an abstract way to describe structure and
relevant features of the world and the semantics of provided services.

The e-service approach should provide abstraction from the implementation
by means of a strong wrapping metaphor (black-box ), but the representation of
the public component’s interface does not automatically ensure that the formal-
ization is abstract enough to express only functional properties. On the other
side, this modeling strategy can result too weak to capture intended semantics.

In this work, the design problem is addressed abstracting from the interac-
tion protocol between actors involved into a service enactment, since the func-
tional semantics of a service should be independent not only from its imple-
mentation (how the function is realized), but also from the interaction proto-
col (how the function is accessed). Notably, XML web-service standards (e.g.,
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WSDL, SOAP) are aiming to achieve network-protocol independence, but many
approaches proposed in literature, like [MB03, CIJ+00, DKR04, SBS04], are
focused on the design and analysis of abstract messaging protocols. Despite
that such kind of details are strictly necessary, in order to deal with semi-
automatic/automatic synthesis or verification issues (more significant proposals
are discussed in [MS02, BFHS03, APY+02, Sri02, DSV04, McD02, BCD+03]),
we are interested in the analysis of the expressiveness of a framework represent-
ing e-services as substantially atomic or, at least, self-consistent operations1.

Starting from this assumption, there is a general agreement upon the adop-
tion of a modeling paradigm based on the elicitation of which (not how) in-
formation is exchanged during the enactment between requestor and provider,
which are the admissible states of the world before the enactment and which are
the possible world states after the correct completion of the service execution.
In other words, in order to characterize an e-service we need to specify its own
inputs, outputs, pre-conditions and effects (IOPE). This is a general approach
deriving substantially from the foundational papers on Computing Semantics
(i.e., Hoare’s logic [Hoa69]) and the AI Planning literature ([RN95, EFL+04]),
but widely used in other fields, like database update theory ([Win90]) and active
databases ([AHV95a, AVFY98]), despite with some adjustments, and adopted
by the semantic web-services community in the definition of modeling languages
and related standards (e.g., OWL-S, DAML-S, WSMO) and generally assumed
in the most approaches in this field.

Despite this large agreement, formal assumptions done by different authors
can vary not negligibly on substantial modeling aspects (e.g., reliability degree,
complete or incomplete information, concurrency level), thus the approaches
are not easily comparable in a direct way. More specifically, most of these ap-
proaches lack the formalization of some intuitive and, in our opinion, interesting
notions, like, for example:

• consistency and realizability of available services: is a given service con-
sistently defined w.r.t. the domain knowledge/constraints?

• functional equivalence/replaceability: are two or more services acting in
a quite similar manner? are they doing the “same” thing? can a service
replace another faulting one?

• functional similarity w.r.t. the invocation context: are two or more ser-
vices similar, abstracting from the invocation scope? E.g., given two tax
payment services, are they actually the “same” service, despite they are
serving different user communities, have potentially been specified inde-
pendently and do not expose the same interfaces/contract? Assuming that
the service contract is as detailed and complete as possible, in the case
of similar services, they must differ at least for the fragment denoting the
service coverage.

In other words, while the classical (i.e., in terms of software components) func-
tional equivalence is assessed considering the whole specification, the functional
similarity is related only to “intrinsic” intensional specification fragment, ignor-
ing the extensional one.

1We point out that in several situations the service interaction protocol (e.g., synchronous
or asynchronous) depends only upon organizational constraints (i.e., the service provider im-
plements part of service process in terms of human work-flow).
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How to (formally) characterize these elements is generally an open issue, but,
on the other hand, we can easily conclude that the ability to deal with these
properties from a formal perspective will greatly help the design and imple-
mentation process, improving the quality of delivered solutions. Formal design
approaches, given the costs induced by their implementation, can be effectively
employed only if they are able to provide some useful insights by means of au-
tomated (even partially) procedures, helping to prevent or to solve issues that
possibly raise during the system life-cycle.

We aim at devising a set of reasoning tasks about available services and
user’s goals, in order to check some of these properties. Considering the design
issues arising in the implementation of a service-oriented architecture, the ability
to detect service replaceability or equivalence on a functional base allows to
easily realize automatic on-line service discovering/binding policies. In fact, it
is possible to narrow the query range to locate a specific service provider in a
given class (i.e., the class of service compatible with a temporary unavailable
one) and enforcing the replacement according to a behavioral comparison.

In our intentions, the service specification should be intended as the formal-
ization of the service contract. Under a fairness assumption, we suppose that
agents act according to domain constraints, which means that they prevent in-
consistent evolutions of the world’s state and that they enforce service contracts.
Roughly speaking, the service preconditions are concerning the commitment
of service requestor, while the service effects the commitment of the service
provider. Moreover, we consider services that have inherently non-deterministic
effects, allowing arbitrary internal process logic.

We also assume that the information concerning the world available to an
agent that reasons about the service community and related elements can be
incomplete, although it is assumed to be correct. In other words, the inference
process is done according to a general open-world assumption (OWA), while
most of the approaches deriving from database applications are based upon a
closed-world assumption (CWA).

The latter is applicable in the case of integration implemented into a closed
and controlled environment (e.g., EIS), but generally we need to cope with
partial domain models, adopting a sort of hybrid setting.

Remark 1. As pointed out in several observations, the specification of some
extensional elements is a characteristic feature of service-oriented applications:
since this specification is ipso facto only partial, we strongly need to deal with
any possible world that is compatible with it.

Despite the network environment is concurrently accessed by a number of
independent agents in a non-cooperative manner (each one aims at achieving
its own goal, possibly clashing with other agent’s ones), we ignore such kind of
problems. In fact, keeping them into account, we should safely conclude only
that every operation can eventually fail due to a clash. On the other hand,
we can observe that the (total) world model should be large enough to allow
every agent to act in a quite isolated manner, since a conflict is statistically
unlikely and distributed transaction technologies provide (limited) locking ca-
pabilities allowing the sequencing of enactments. Therefore, we assume that
only an enactment is active at a time or, equivalently, we ignore concurrent
client sessions.

27



CHAPTER 3 DEFINITIONS

3.2 Formal Tools

In the following we briefly present the main formal tools employed in the present
work. In particular, we present an interesting fragment of first-order predicate
logic for which a decidable proof algorithm exists and the family of Descrip-
tion Logics, widely employed in the Semantic Web and Semantic Web Services
applications.

Roughly speaking, we focus our attention on a class of Description Logics
such that reasoning tasks about model update properties in the description logic
can be reduced to decidable inference problems in first-order logic.

3.2.1 First-Order Logic with Counting Quantifiers

Among various fragments of the well-known first-order predicate logic we con-
sider the function-free fragment with at most two variables with counting quan-
tifiers, denoted as C2. Roughly speaking, such a kind of construct can express
conditions as “there exist at most k elements such that . . . ” or “there exist
at least k elements such that . . . ”, generally expressed in first-order logic using
equality.

Let V = {x, y} be the set of variable names, a C2-term is an occurrence of
a variable name. Let P be a finite set of unary and binary predicate names, a
C2-atomic formula set is defined as followings:

• if P is an unary predicate name and t is a term, then P (t) is an atomic
formula;

• if P as a binary predicate name t1 and t2 are terms, then P (t1, t2) is an
atomic formula;

• > and ⊥ are atomic formulas.

Finally, the set of C2 well-founded formulas is inductively defined as:

• if A is an atomic formula, then A is a formula;

• if φ is a formula, then (φ) is a formula;

• if φ is a formula, then ¬φ is a formula;

• if φ and ψ are formulas, then φ∧ψ, φ∨ψ, φ→ ψ, φ ≡ ψ are also formulas;

• if φ is a formula and v ∈ V is a variable name, then ∀v.φ is a formula;

• if φ is a formula, v ∈ V is a variable name, n ∈ N is a positive natural
number and ./∈ {=, <,>,≤,≥}, then ∃./nv.φ is a formula.

As shorthands, if we have a multiple occurrence of the same quantifier Q as
Qx.Qy.φ we simply use the notation Qx, y.φ.

The underlying semantics is the standard semantics of first-order logic con-
sidering the additional case of counting quantifiers that can be expressed ac-
cording the following rule: let ω = 〈∆ω, ·ω〉 be an interpretation structure for
the alphabet P, σ an assignment for variables V and φ a well-founded formula,
then 〈ω, σ〉 |= ∃≥nv.φ iff there exists a set D ⊆ ∆ω s.t. ‖D‖ ≥ n and for each
d ∈ D we have that ω |= φ (σ [v/d]).
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The semantics can be also defined reducing the language to first-order logic
with equality according to the fact that:

∃≥nv.φ(v)⇐⇒ ∃x1, . . . , xn.
∧
i 6=j

xi 6= xj ∧
∧
i

φ(xi)

Other counting quantifiers can be defined analogously using the language closure
under boolean operators.

Notably, the presence of equality does not increase the expressive power of
the language, since it can be simulated introducing a binary predicate eq and
the following axioms: ∀x.eq (x, x) and ∀x.∃=1y.eq (x, y).

A remarkable property of this language is that the satisfiability and finite
satisfiability problems are decidable ([GOR97, HSG04]). For more details about
the two-variable fragment of first-order logic and counting quantifiers see [PH05].

3.2.2 Expressive Description Logics

The description logic languageALCQI is defined in terms of concept expressions
according to the following syntax:

C,C ′ −→ A | ¬C | C u C ′ | (./ n R C)

R −→ P |R−

where A and P denote, respectively, atomic concept and atomic role names,
C and R denote, respectively, arbitrary concepts and roles, n ∈ N and ./∈
{=, <,>,≤,≥} is a generic relational operator on natural numbers. The lan-
guage ALCQIO enriches the concept expression of ALCQI language with the
nominal construct:

C,C ′ −→ A | ¬C | C u C ′ | (./ n R C) | {o}

Other operators (e.g., t, ∀, ∃) can be defined in terms of primitive ones. The
concepts > and ⊥ denote the interpretation universe and the empty set. The
semantics of such a language is defined w.r.t. an interpretation structure I s.t.
concept names are interpreted as subsets of the domain ∆I and roles and object
names, respectively, as binary relations and elements over ∆I , as follows:

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C u C ′)I = CI ∩ C ′I

(./ n R C)I =
{
o ∈ ∆I |

∥∥{o′ ∈ ∆I |〈o, o′〉 ∈ RI ∧ o′ ∈ CI}∥∥ ./ n}
{o}I =

{
oI
}

P I ⊆ ∆I ×∆I

(R−)I =
{
〈o, o′〉 ∈ ∆I ×∆I |〈o′, o〉 ∈ RI

}
A knowledge base (KB) is a pair 〈T ,A〉 formed of a terminological box or TBox
T and an assertional box or ABox A. The former contains concept inclusion
axioms in the form C v D, the latter object membership axioms or assertional
sentences in the forms o : C and (o, o′) : R. An interpretation I satisfies, or
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is a model of, the knowledge base iff, for each C v D ∈ T , CI ⊆ DI , for each
o : C ∈ A, oI ∈ CI and for each (o, o′) : R ∈ A, 〈oIo′I〉 ∈ RI . Generally, the
TBox is considered as the intensional specification of the knowledge base, while
the ABox is the extensional one. The ALCQIO language allows also for another
kind of axioms, i.e., cardinality restrictions which have the form ](C) ./ n: an
interpretation I is a model for the above axiom iff ‖C‖I ./ n. Such kinds of
Description Logics also have a standard semantics in terms of first-order logic
fragment function-free with counting quantifiers C2 presented in the previous
section, as follows:

πx(A) , A(x)

πx(¬C) , ¬πx(C)

πx(C u C ′) , πx(C) ∧ πx(C ′)

πx(./ n P C) , ∃./ny.(P (x, y) ∧ πy(C))

πx(./ n P− C) , ∃./ny.(P (y, x) ∧ πy(C))

πy(C) , πx(C)[x/y, y/x]

π(](C) ./ n) , ∃./nx.πx(C)

π(C v D) , ∀x.πx(C)→ πx(D)

where each object name o has been replaced with a singleton concept name
O and cardinality restrictions ](O) = 1. The unique name assumption can
be easily enforced adding additional axioms the impose the disjointness among
different singleton sets.

We remark that such a class of knowledge representation languages is pro-
viding a formal foundation to the Semantic Web but also to many design
paradigms employed in the specification of information systems as UML struc-
tural models (i.e., class and component diagrams) and Entity-Relationship dia-
grams ([BCN92]).

For more details and related results please refer to [BCM+03] and [Tob00].

3.2.3 Computational Complexity

In this work we adopt the notation for computational complexity classes as
presented in [Pap94].

In particular, we will analyze the time-complexity of problems using a de-
terministic or non-deterministic Turing Machine (TM). Since most of the prob-
lems that we study are decision problems, we generally consider a TM that
is able, given a problem instance accordingly encoded on the input tape, to
check whether it belongs to a language s.t. the target property holds for its
productions (and only for these ones), writing the boolean result on the output
tape.

Some very complex problems are, indeed, solvable using TMs that are also
able to access an oracle: a computational device that is able to recognize a
production of a language of a given complexity class in constant time (excluding
the time required to encode/decode the input and the output), according to
the approach to relative complexity classes introduced in [LL76]. We are also
assuming that this oracle is accessed at most once in every non-deterministic
computation branch.
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The most relevant complexity classes used in the rest are reported in Ta-
ble 3.1.

Class Description
EXP Class of languages that can be recognized using

a deterministic TM that operates in time expo-
nential in the input length

NEXP Class of languages that can be recognized using
a non-deterministic TM that operates in time
exponential in the input length

coNEXP Class of languages that are complement of lan-
guages in NEXP

NEEXP Class of languages that can be recognized using
a non-deterministic TM that operates in time
double-exponential in the input length

NPNEXP Class of languages that can be recognized using
a non-deterministic TM that operates in time
polynomial in the input length, using an oracle
for a language in NEXP (or its complement)

coNPNEXP Class of languages that are complement of lan-
guages in NPNEXP

Table 3.1: Complexity class definitions

3.3 System Specification

In this section, we introduce the model employed to specify system properties,
starting from general assumptions adopted in knowledge representation appli-
cations and in the Semantic Web field.

Roughly speaking, in this context, we suppose that the system can be for-
mally described using an alphabet of symbols of various kinds denoting objects,
groups and links between them, in order to provide a formal axiomatization in
a kind of logics, s.t. interpretations of the resulting logic theory are the pos-
sible system states. Since we are interested in evolving systems or, in other
terms, into changing-state systems, we also need to describe such transitions
and reasoning about them.

More technically, we assume that an infinite countable universe U is given
and that the system is described using an alphabet composed of a finite set of
unary predicate names (or concept names) A, a finite set of binary predicate
names (or role names) P and a finite set of constant names (or object names)
O. Let object names be constantly interpreted according to the standard-names
assumption on a finite subset O ⊂ U of the given universe, i.e., by a bijective
function ·I : O 7→ O.

We also assume that the modeled system, or, in other words, the application
domain, can be described in terms of static properties/constraints using an
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expressive knowledge base formalism (i.e., a description logic), which allows
both to define complex data structures and to easily include also extensional
specification elements that will turn useful in the following.

Definition 1 (Domain specification). A domain specification is composed of
three finite mutually disjoint sets:

• a concept alphabet (A);

• a role alphabet (P);

• an object alphabet (O).

A system state (or world state) is described using an interpretation of the
alphabet on the universe.

Definition 2 (World state). A world state ω = 〈∆ω, ·ω〉 is an interpretation
s.t.:

• O ⊆ ∆ω ⊆ U is the interpretation (or active) domain;

• ·ω is a function that maps each concept name A ∈ A to a set Aω ⊆ ∆ω,
each role name P ∈ P to a set Pω ⊆ ∆ω ×∆ω and each object name as
the ·I function.

Since generally not every interpretation can be considered to be a legal sys-
tem state representation, we introduce the ability to restrict the state space to
the valid ones by means of a constraint set, expressed using a suitable language.

Definition 3 (World specification). A world specificationW is a knowledge base
〈TW ,AW〉 expressed on the alphabet 〈A,P,O〉 using the expressive description
logic ALCQI.

Definition 4 (Legal world state). Given a world specification W, a world state
ω is valid w.r.t. the specification iff it is a model of the description logic theory:

ω |=W

Definition 5 (Consistent world specification). A world specification W is con-
sistent iff there exists at least a legal world state w.r.t. W.

Given a domain specification, assuming, w.l.o.g., that Top and New are new
concept names, we define a knowledge base K̃B composed by the instantiation
of the axiom schema2 reported in Table 3.2 for any concept name A ∈ A, role
name P ∈ P and object name o ∈ O.

Remark 2. We use axiom schemas as a useful notation shorthands: given
an alphabet, the instantiated theory is obtained by replacing name placeholders
(e.g., A, P , o) with any compatible name and parameter name with assigned
value, evaluating any translation or name mapping function, as shown in the
following.

2For the sake of simplicity, even when we are defining first-order language productions, we
adopt a description logic syntax, at least when it is expressive enough, switching to the FOL
syntax when it is needed. We also omit common schema arguments when they can inferred
from the context (e.g., domain or world specifications).
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Table 3.2: The basic axiom schema

> v Top t New

Top u New v ⊥
A v Top

> v ∀P.Top

> v ∀P−.Top

o : Top

Remark 3. We assume that name mapping functions are always injective, and
when we employ different functions at the same time we also assume that their
codomains are mutually disjoint. We assume also that name sets of different
primitive constructs (e.g., concepts, roles, variables) are always mutually dis-
joint.

We inductively define a translation function τ over the concept expressions
of the description logic language ALCQIO, from the alphabet 〈A,P,O〉 to the
new alphabet 〈A ∪ {Top} ,P,O〉, as follows:

τ(A) , A

τ(C u C ′) , τ(C) u τ(C ′)

τ((./ n R C)) , (./ n R τ(C))

τ({o}) , {o}
τ(¬C) , Top u ¬τ(C)

Now, we start to introduce our approach to deal with reasoning tasks gen-
erally concerning dynamic features using a “traditional” logic language, in the
sense that it does not provide native temporal primitives. The basic idea is to
embed a system state transition, described in terms of initial and final states,
parameter assignments, etc., into a single interpretation structure on which we
solve some reasoning tasks (satisfiability or entailment) obtained by accordingly
encoding the e-service checking problem into a suitable set of axioms. The link
between original and “working” interpretation structures is caught by the fol-
lowing definition: it will be extended in the following as we go along, so that
we are able to cope with various modeling refinements.

Definition 6 (Embedding relation). Let ω = 〈∆ω, ·ω〉 be an arbitrary world
state defined on an interpretation domain ∆ω ⊆ U, and let ω̂ = 〈U, ·ω̂〉 be any
interpretation over the alphabet 〈A∪{Top} ,P,O〉. The world state is embedded
into the interpretation (ω  ω̂) iff the following conditions hold:

∆ω = Topω̂

Nω = N ω̂

oω = oω̂
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for any N ∈ A ∪P and for any o ∈ O.

We can easily generalize the provided definition introducing a name mapping
function that embeds the structure using different concept or role names (since
objects are always interpreted using the unique name assumption, we do not
need an object mapping function).

Definition 7 (Generalized embedding relation). Let ω = 〈∆ω, ·ω〉 be an ar-
bitrary world state defined on an interpretation domain ∆ω ⊆ U, let m be a
function that maps each concept (resp. role) name A (resp. P ) into a new
one concept name m(A) (resp. role name m(P )) and let Topm be a new con-
cept name. Given any interpretation ω̂ = 〈U, ·ω̂〉 over the alphabet 〈m(A) ∪
{Topm} ,m(P),O〉, the world state ω is embedded into the interpretation (ω  m

ω̂), w.r.t. the mapping m and the embedded top name Topm, iff the following
conditions hold:

∆ω = Topω̂
m

Nω = m(N)ω̂

oω = oω̂

for any N ∈ A ∪P and for any o ∈ O.

Remark 4. We notice that using different mapping functions, which means
having mutually disjoint co-domains, and possibly different embedded top names,
distinct arbitrary world states can be embedded into an interpretation built over
the union of mapped alphabets.

Remark 5. The properties of the embedding relation shown above can be ex-
tended to the generalized case, keeping into account accordingly the name map-
ping function m and the top name Topm.

Lemma 1. Let be ω and ω̂ be respectively a world state and an arbitrary in-
terpretation s.t. the world state is embedded into the interpretation (ω  ω̂)
w.r.t. a domain specification 〈A,P,O〉. Then, ω is embedded into ω̂ for any
other domain specification 〈A’,P’,O’〉 s.t.:

A’ ⊆ A

P’ ⊆ P

O’ ⊆ O

Proof. Trivial.

Lemma 2. Let be ω and ω̂ be respectively a world state and an arbitrary in-
terpretation s.t. the world state is embedded into the interpretation (ω  ω̂).
Then, ω̂ |= K̃B.

Proof. We analyze various axioms of the knowledge base, showing that the
provided structure is a model according to the standard semantics. Since ∆ω =
Topω̂ and U \∆ω = Newω̂, we can easily conclude that:

ω̂ |= > v Top t New

ω̂ |= Top u New v ⊥
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Since Aω = Aω̂ and Aω ⊆ ∆ω = Topω̂ we can also infer that:

ω̂ |= A v Top

Using a similar argument, we can derive that also the other axioms hold in
ω̂.

Lemma 3. Let ω̂ be a model of K̃B, then there exists exactly one world state
ω that is embedded into the interpretation (ω  ω̂).

Proof. The axioms introduced into the knowledge base force the interpretation
of named concepts, roles and objects to be contained into the extension of the
concept Top, which means that the projected structure built restricting the
interpretation domain ∆ω to Topω̂ is well-founded, since the codomain of the
interpretation function ·ω is actually defined over ∆ω.

To show that there is only one world state embedded into the interpretation
we point out that the projection is completely deterministic (there is any deci-
sion point) and that the projected structure (ω) is completely defined once the
model is provided.

Theorem 1. Let be ω and ω̂ be respectively a world state and an arbitrary
interpretation s.t. the world state is embedded into the interpretation (ω  ω̂),
then:

Rω = Rω̂

for any ALCQIO role expression R built over the domain specification alphabet
〈A,P,O〉.

Proof. Since the embedding relation imposes that Pω = P ω̂, we can easily
conclude that also [P−]ω = [P−]ω̂ and that the claim follows.

Theorem 2. Let be ω and ω̂ be respectively a world state and an arbitrary
interpretation s.t. the world state is embedded into the interpretation (ω  ω̂),
then:

Cω = [τ(C)]ω̂

for any ALCQIO concept expression C built over the domain specification al-
phabet 〈A,P,O〉.

Proof. We prove the theorem by induction over the expression language.

1. Aω = [τ(A)]ω̂ where A ∈ A. By the definition of translation function τ :

[τ(A)]ω̂ = Aω̂

By the definition of the embedding relation between the structures:

Aω̂ = Aω

2. [{o1, . . . , on}]ω = [τ({o1, . . . , on})]ω̂ where {o1, . . . , on} ⊆ O. By the defi-
nition of translation function τ :

[τ({o1, . . . , on})]ω̂ = [{o1, . . . , on}]ω̂
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According to the standard semantics:

[{o1, . . . , on}]ω̂ =
n⋃

i=1

oω̂
i

By the definition of the embedding relation between the structures:

n⋃
i=1

oω̂
i =

n⋃
i=1

oω
i

According to the standard semantics:

n⋃
i=1

oω
i = [{o1, . . . , on}]ω

3. [C u C ′]ω = [τ(C u C ′)]ω̂. By the definition of translation function τ :

[τ(C u C ′)]ω̂ = [τ(C) u τ(C ′)]ω̂

According to the standard semantics:

[τ(C) u τ(C ′)]ω̂ = τ(C)ω̂ ∩ τ(C ′)ω̂

By the inductive hypothesis:

τ(C)ω̂ ∩ τ(C ′)ω̂ = Cω ∩ C ′ω

According to the standard semantics:

Cω ∩ C ′ω = [C u C ′]ω

4. [¬C]ω = [τ(¬C)]ω̂. By the definition of translation function τ :

[τ(¬C)]ω̂ = [Top u ¬τ(C)]ω̂

According to the standard semantics:

[Top u ¬τ(C)]ω̂ = Topω̂ ∩ [¬τ(C)]ω̂

Topω̂ ∩ [¬τ(C)]ω̂ = Topω̂ ∩ (U \ [τ(C)]ω̂)

By the inductive hypothesis:

Topω̂ ∩ (U \ [τ(C)]ω̂) = Topω̂ ∩ (U \ Cω)

By the definition of the embedding relation between the structures:

Topω̂ ∩ (U \ Cω) = ∆ω ∩ (U \ Cω)

Since ∆ω ⊆ U and Cω ⊆ U:

∆ω ∩ (U \ Cω) = ∆ω \ Cω

According to the standard semantics:

∆ω \ Cω = [¬C]ω
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5. [(≥ n R C)]ω = [τ((≥ n R C))]ω̂, where R is an arbitrary role expression
(R→ P |P−, P ∈ P). By the definition of translation function τ :

[τ((≥ n R C))]ω̂ = [(≥ n R τ(C))]ω̂

According to the standard semantics:

[(≥ n R τ(C))]ω̂ =
{
α|
∥∥∥Sω̂

τ(C),R(α)
∥∥∥ ≥ n} (3.1)

where Sω̂
τ(C),R(α) is the set of R-successors of element α belonging to τ(C)

defined as:
Sω̂

τ(C),R(α) ,
{
β|β ∈ τ(C)ω̂, 〈α, β〉 ∈ Rω̂

}
But, since the inductive hypothesis and Theorem 1, we can establish that:

Sω̂
τ(C),R(α) = {β|β ∈ Cω, 〈α, β〉 ∈ Rω}

In other words, we can conclude that:

Sω̂
τ(C),R(α) = Sω

C,R(α)

Applying such result to Eq. 3.1, we have that:

[(≥ n R τ(C))]ω̂ =
{
α|
∥∥Sω

C,R(α)
∥∥ ≥ n}

Observing, according to the standard semantics, that:

[(≥ n R C)]ω =
{
α|
∥∥Sω

C,R(α)
∥∥ ≥ n}

we have proved the claim.

Remark 6. We notice that other language constructs can be defined in terms
of primitive ones:

∃R.C , (≥ 1RC)
∀R.C , ¬∃R.¬C
C t C ′ , ¬(¬C u ¬C ′)

Given a world state ω = 〈∆ω, ·ω〉 we define an embedding function µ that
maps such an interpretation into another interpretation ω̂ s.t.:

• the interpretation domain is the whole universe (∆ω̃ = U);

• the interpretation of concepts, roles and object names is preserved (Nω =
N ω̃);

• the interpretation of Top is the active domain of ω (Topω̃ = ∆ω);

• the interpretation of New is U \∆ω.

The function π computes the inverse of µ, projecting out from an interpretation
ω̂ a world state ω, and it is defined only for structures that are models of the
knowledge base K̃B.

We remark that the provided definitions follow the construction used to
define the embedding relation among structures. It is easy to observe that the
following results hold:
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Lemma 4. Given a world state ω, let ω̂ = µ(ω), then ω  ω̂.

Lemma 5. Given a model ω̂ of K̃B, let ω = π(ω̂), then ω  ω̂.

Let KB = 〈T ,A〉 be an arbitrary knowledge base built over the domain
specification (i.e., a world specification W), we define a new knowledge base
τ(KB) over the extended alphabet s.t., for each general inclusion assertion
C v D in the TBox T , it includes a new axiom of the form:

τ(C) v τ(D)

for each ABox assertion o : C in A, it includes a new axiom of the form:

o : τ(C)

and, for each ABox assertion (o, o′) : R in A, it includes a new axiom of the
form:

(o, o′) : τ(R)

Theorem 3. If a world state ω is a model of the knowledge base KB, then the
structure ω̂ = µ(ω) is a model of the knowledge base K̃B ∧ τ(KB).

Proof. The mapping function µ computes a new structure ω̂ that embeds the
model ω. By Lemma 2, in such a structure the axioms of the knowledge base
K̃B hold, so, in order to prove that ω̂ is a model for the whole knowledge base
we need to prove that also other axioms, obtained applying the τ function to
concept expression, are satisfied. By contradiction, we assume that there is an
axiom τ(C) v τ(D) s.t.:

τ(C)ω̂ * τ(D)ω̂

According to Theorem 2, we have that τ(C)ω̂ = Cω and τ(D)ω̂ = Dω, and we
can conclude that:

Cω * Dω

contradicting the hypothesis that:

ω |= C v D

We can prove an analogous result regarding the ABox assertions, keeping into
account that objects are always interpreted according to the unique name as-
sumption (each structure agrees upon their interpretation).

Theorem 4. If ω̂ is a model of the knowledge base K̃B ∧ τ(KB), then the
interpretation ω = π(ω̂) is a world state that satisfies the knowledge base KB.

Proof. According to Lemma 3 the structure ω = π(ω̂) is an interpretation of the
knowledge base KB. In order to show that it is also a model, we need to prove
that all assertions hold. By contradiction, we assume that there is an axiom
C v D s.t.:

Cω * Dω

According to Theorem 2 we have that τ(C)ω̂ = Cω and τ(D)ω̂ = Dω, thus we
can conclude that:

τ(C)ω̂ * τ(D)ω̂
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contradicting the hypothesis that:

ω̂ |= τ(C) v τ(D)

As in the previous theorem we can prove an analogous result regarding the ABox
assertions.

From the previous theorems we can easily conclude that:

Corollary 1. The knowledge base KB is satisfiable on an arbitrary interpreta-
tion domain ∆ ⊆ U iff the knowledge base K̃B ∧ τ(KB) is satisfiable on U.

Theorem 5. Given a world specification W, the problem of checking if it is
consistent is in NEXP.

Proof. According to the proposed definition and to Corollary 1 in order to check
whenever the given specification is consistent, we need to solve a satisfiability
problem for a C2 sentence. As shown in [PH05] the SATC2 problem is in NEXP,
w.r.t. the length of the sentence, even allowing for succinct coding of number
restrictions, while the devised construction is clearly linear in the size of the
input, so there is a polynomial reduction from which the proposition follows.

We notice that we consider the satisfiability of the (original) knowledge base
KB w.r.t. some interpretation domain ∆ω chosen among subsets of the universe
U. Now, if the knowledge base is satisfiable in a restricted domain, is it also
satisfiable on the whole universe? In general the answer is no, but if we adopt a
language for which the disjoint union model property holds3, like ALCQI, the
answer turns to be positive.

Lemma 6. Given an ALCQI-knowledge base, if it admits a model over a finite
subset ∆ω of the interpretation universe U , then it admits also a model on the
whole universe.

Proof. Since the finite cardinality when can be an infinite countable number of
disjoint replicas of the model using elements in U \ ∆ω: these replicas satisfy
TBox assertions, while ABox assertions are already satisfied by the original one.
The union of such a kind of models cover the whole universe and by the disjoint
union model property it is also a model of the theory.

Lemma 7. Given an ALCQI-knowledge base, if it admits a model over an
infinite subset ∆ω of the interpretation universe U , then it admits also a model
on the whole universe.

Proof. We distinguish two cases, if the cardinality of the complement of the
interpretation domain w.r.t. the universe δ = U \∆ω is finite or not.

If ‖δ‖ = ℵo, then there is a bijective function between ∆ω and δ, and we
can build a replica ω′ of the model ω using the set δ as interpretation domain.
Clearly, ω′ is also a model of the TBox, while ω is a model of the whole knowledge
base. Since the domains are disjoint, their union, that covers the whole universe,

3According to such a property, if ω = 〈∆ω , ·ω〉 and ω′ = 〈∆ω′ , ·ω′ 〉 are two model of a

theory, the interpretation ω
U

ω′ = 〈∆ω
U

∆ω′ , ·ω
U

ω′ 〉 is also a model. It is a typical property
of modal logics that turns also useful for Description Logic applications ([CD03, De 95]). The

operator ] is defined as A ] B , (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).
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for the disjoint model property is also a model of the TBox and of the ABox
too, because the interpretation function ·ω]ω′ , restricted to the domain ∆ω is
equals to ·ω.

If the set δ is finite, we can select a subset of δ′ ⊂ ∆ω of the same cardinality.
Using the bijective function between these sets, swapping elements in δ and δ′

and accordingly adjusting their links, we can derive a new model ω′ of the
TBox having as interpretation domain the set U \ δ′. According to the disjoint
union model property the structure ω′′ having as interpretation domain the set
δ∪δ′ = (U\δ)](U\δ′) is also a model of the TBox. Using the same construction
adopted in the proof of the previous claim, we can derive a new model ω′′′

having as its interpretation domain the whole universe U, but this structure is
not necessarily also a model of the ABox too. Employing the disjoint union
model property, we can derive another new model ω′′′′ s.t. the interpretation
domain is δ, since:

U ]∆ω = δ

Combining this model with ω we obtain finally a structure that since the do-
mains are disjoint, their union covers the whole universe, for the disjoint model
property is also a model of the TBox and of the ABox too, because the inter-
pretation function ·ω]ω′′′′ , restricted to the domain ∆ω is equals to ·ω.

Theorem 6. Given an ALCQI-knowledge base, if it admits a model over an
arbitrary subset ∆ω of the interpretation universe U , then it admits also a model
on the whole universe.

The result proved in previous claims does not hold if the language allows for
using nominal constructs or more general cardinality axioms, as the following
example shows, since they can restrict the satisfiability only to finite interpre-
tation domains.

Example 1. The following ALCQIO TBox allows only for models s.t. the
interpretation domain has size 1:

> v {o}

where o is a generic object name.

In other words, restring our attention only to ALCQI world specification
we can reduce at least the complexity of the consistency check problem.

Lemma 8. Given an ALCQI world specification W, the resulting knowledge
base K̃B ∧ τ(KB) is also in ALCQI

Proof. The claim follows easily from the definition of translation function and
additional axioms: if there is any nominal-related constructs, the knowledge
base can be expressed using the ALCQI language.

From the previous results, the following property follows.

Theorem 7. Given an ALCQI world specification W, the problem of checking
if it is consistent is EXP-complete.
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Proof. The proof of the membership claim is quite similar to Theorem 5, but
applying Lemma 8 we obtain the reduction to a satisfiability problem instance
for the ALCQI language that is EXP-complete, according to [CD03, CDLN01].

Moreover, applying Theorem 6 we can reduce the problem of satisfiability
checking for an arbitrary ALCQI knowledge base to the consistency checking
of the corresponding world specification (that is essentially a knowledge base).
Hence, if the world specification admits as a model a subset of the interpreta-
tion universe, then knowledge base is satisfiable,otherwise the knowledge base
is unsatisfiable. The reduction is clearly polynomial since it is the identity
function.

3.4 Object Instantiation

In the previous section we have discussed about basic properties of world states
in the spirit of knowledge representation systems, but since we are in a dynamic
setting, we need to introduce some update operators. In this section we start
introducing the notion of object instantiation and related properties, as well as a
first example of the approach devised to cope with implied verification problems
related to them. We will extend this model in further chapters.

The system can dynamically evolve from a state to another one, generally as
the result of the execution of some actions. These actions can essentially alter
the extensional level or, in other words, perform an update of the system state
specification. In present framework, world-altering actions can be only carried
out by means of provided e-services, which we will describe in the following,
but, w.l.o.g., we can assume that a service enactment can essentially perform
the following kinds of tasks:

• create new objects, which means adding elements that are not included in
the active domain of the initial state (assuming that U \∆ω 6= �) to the
active domain of the resulting state, and that can be viewed as new;

• add or remove elements to a concept extension;

• add or remove links between elements.

For the sake of symmetry we can also consider the ability to destroy an existing
element, which means throwing it out from the active domain, however we are
not interested in such an ability4.

While the extensional level can be altered by performed actions, the in-
tensional level, built essentially by the system specification and constraints,
must be assumed as immutable. In other words, the proposed approach inves-
tigates knowledge update related problems, which are somehow more general
than knowledge revision ones. On the other hand, we must be able to analyze
the actions under the perspective of soundness w.r.t. a given constraint set.

Definition 8 (Finite room world state). A world state ω has room for at least a
finite strictly positive integer number n of newly created objects iff the cardinality
of the set U \∆ω is at least n.

4The proposed framework can be easily adjusted with some minor modifications in order
to prevent that “destroyed” elements can come back as newly “created” ones.
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Given an integer number n ∈ N, assuming, w.l.o.g., that Top and New are
new concept names, aux is a new role name and spy is a new object name, we
define a knowledge base K̃B

n
, as extension of the knowledge base K̃B previously

defined, adding the axioms obtained by the instantiation of the axioms shown
in Table 3.3 w.r.t. the parameter n.

Table 3.3: The axiom schema ∆KBn(spy, aux)

> v ∀aux.New

> v ∀aux−.New

spy : New u (≥ n aux)

Given a world state ω = 〈∆ω, ·ω〉 we extend the definition of embedding
function µ, and corresponding embedding relation, provided at page 37, adding
the following specifications:

• the object spy is assigned to an element of Newω̃, if any;

• the role aux is interpreted as
{
spyω̃

}
× Newω̃.

As in the previous case, the function π computes the inverse of µ, while the
mapping function is actually a multiple-result or a non-deterministic function,
since it can embed the world state into different structures given the choice
of the spy point. However, these structures are isomorphic, as we prove in
the following, and actually indistinguishable by the languages employed. The
construction of the interpretation using the embedding function is depicted in
Figure 3.1.

Theorem 8. If a world state ω has room for at least a finite strictly positive
number n of newly created objects, then the interpretation ω̃ = µ(ω) is a model
of the knowledge base K̃B

n
.

Proof. Since the world state has room for at least n newly created element, then
‖U \∆ω‖ ≥ n, that means that also the extension of the concept New contains
at least n element. We peek an arbitrary element x1 as the interpretation of the
object spy and since the interpretation of the role aux is

{
spyω̃

}
× Newω̃, then

x1 has n aux-successors (including itself) {x1, x2, . . . , xn}.
Other axioms are also satisfied using the construction performed by the

mapping function, since the partition constraints follow from the definition of
world state and qualified restrictions are enforced by construction itself.

Theorem 9. If ω̃ is a model of the knowledge base K̃B
n
, then the interpretation

ω = π(ω̃) is a world state having room for at least a finite strictly positive integer
number n of newly created objects.

Proof. Each model ω̃ of the knowledge base must interpret the concept New to
a set having at least n elements, since the constraint on the aux-successors of
the object spy and the qualified restrictions over the role aux.
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U = New ∪ Top

New

∆ω = Top

spy = x1

x2 x3 xn

aux

Figure 3.1: An example of the embedded model structure

The axioms over the concept New and Top also ensure that they realize a
complete partition of the universe U as required from the world state definition.

Remark 7. It is worth noticing, that such claims also extend to the case of
n = 0 (no instantiation), and, hence, we can apply them to any n ∈ N.

3.5 Variables and Queries

In order to cope with complex domain specifications, we now include in our
framework the typical constructs employed in the formalization of information
systems, like variables and queries. The adopted approach is in the spirit of
[Bor94], but other query language classes are also addressable using a suitable
encoding: e.g., in [CDV05] is devised an encoding for union of conjunctive
queries on DL knowledge bases.

Definition 9 (Parameterized query). Given a domain specification and a finite
set of variable names V, distinct from domain alphabets, a parameterized query
Q(V) is an arbitrary ALCQIO-concept expression built on the alphabet 〈A ∪
V,P,O〉.

Definition 10 (Variable assignment). Given a set of variable names V and
a subset ∆ of the universe U, an assignment σV on ∆ is a function mapping
names in V to elements of ∆.
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An assignment binds each variable name to a domain element, and each
variable can be considered essentially as a singleton (or a nominal)5.

Definition 11 (Extended interpretation). Given a model, i.e., a world state,
ω = 〈∆ω, ·ω〉 and a variable assignment σV on ∆ω, the extended interpretation
ω / σV is a new structure s.t.:

• the interpretation domain is the same as ω;

• the interpretation function ·ω/σV is the same as ω for each name not in
V, while each V ∈ V it is interpreted as:

V ω/σV = σV(V )

Let X and Y be two distinct variable name sets, and let σX and σY be two
assignment on the same domain ∆ω, given a model ω on such domain, we can
combine the extended interpretations obtaining a new model (ω/σX)/σY where
each variable names in X ∪Y is bound to a domain element. Since the name
sets are distinct, the application order of the operator / is irrelevant.

Lemma 9. Given a model ω = 〈∆ω, ·ω〉 and two variable assignments σX and
σY on the same domain ∆ω, if X and Y are distinct, then:

(ω / σX) / σY = (ω / σY) / σX

Definition 12 (Parameterized query evaluation). Given a query Q(V), a world
state ω = 〈∆ω, ·ω〉 and a variable assignment σ on ∆ω the evaluation of the
query is the set of elements of ∆ω assigned to the concept Q in the extended
interpretation ω / σV:

Qω(σV) = {α|ω / σV |= α : Q}

Among queries we need to distinguish those that realize an access function,
i.e., select at most an element as result.

Definition 13 (Access function). Given a world specificationW, a query Q(V),
is an access function iff for each legal world state ω and for each assignment σV

on ∆ω the cardinality of its evaluation is at most 1:

‖Qω(σV)‖ ≤ 1

Given a domain specification 〈A,P,O〉 and the corresponding embedding
knowledge base K̃B, and given a set V of variable names, we define a new
knowledge base K̃B

V
on the alphabet 〈A ∪V ∪ {Top,New} ,P,O〉 adding to

K̃B axioms obtained instantiating the schema ∆KBV, shown in Table 3.4,
where V is any variable name in V, introduced as a new concept name in the
alphabet.

We extend also the definition of the µ function in order to deal with variable
assignments too, using the notion of extended interpretation previously devised.
We define a new mapping function µV(ω, σ) s.t.:

5It has been shown [Tob00] that cardinality constraints, as in C2 logics, and nominal
constructs, as in ALCQIO, are, roughly speaking, equivalent, despite the latter language
strictly contains the former one in terms of expressive power [Tob99].
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Table 3.4: The axiom schema ∆KBV

V v Top

](V ) = 1

• the interpretation domain is the whole universe (∆ω̃ = U);

• the interpretation of concepts, roles and objects is preserved (Nω = N ω̃);

• the interpretation of Top is the active domain of ω (Topω̃ = ∆ω);

• the interpretation of New is U \∆ω;

• the interpretation of variable auxiliary concepts is defined according to
the assignment (σ(V ) = V ω̃).

We can also define an inverse projection function πV that given a valid structure
ω̃ for the new knowledge base returns a pair 〈ω, σ〉 s.t. ω̃ = µV(ω, σ).

Lemma 10. Given a consistent pair ω, σ, then:

µV(ω, σ) = µ(ω / σ)

Proof. The result holds since, according to the provided definition of extended
interpretation, variable and concept name sets are distinct, so that we can deal
with variable as auxiliary concepts (even having an additional cardinality re-
strictions).

Combining the previous result with Lemmas 4 and 2 we obtain also the
following:

Theorem 10. Given a consistent pair ω, σ, s.t. cod(σ) ⊆ ∆ω, let ω̃ = µV(ω, σ),
then:

ω / σ  ω̃

and:
ω̃ |= K̃B

V

Proof. The definition of variable assignment and extended interpretation ensure
that each variable concept name is interpreted as a singleton in the world state
domain, enforcing the cardinality restriction axioms.

Theorem 11. Given a model ω̃ of the knowledge base K̃B
V

and a pair 〈ω, σ〉
s.t. 〈ω, σ〉 = πV(ω̃), then:

ω / σ  ω̃

over the concept alphabet A ∪V and then:

ω  ω̃

over the concept alphabet A.
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Proof. This is an extension of Lemma 5: analogously to the previous case the
result holds because concept and variable names are distinct sets and variables
can be managed as auxiliary concept names. The only issue is related to the
definition of the variable assignment, that forces each variable to be bound
to exactly one element at time, but such a kind of constraint is realized by
cardinality restriction axioms.

Theorem 12. Given a world specification W, a query Q(V) is an access func-
tion iff the following implication holds:

K̃B
V ∧ τ(W) |= ](τ(Q(V))) ≤ 1

Proof. Assuming that the implication holds, but by contradiction that Q(V) is
not an access function, let ω be a legal world state and let σ be a consistent
assignment on it s.t., the evaluation of the query contains more than one element.

Since Theorem 3, using the function µV we can embed the world model into
a structure that is surely a model for the τ(W) ∧ K̃B axioms except the newly
introduced ones (K̃B

V \ K̃B). So that we can prove the claim, we need to show
that also other axioms hold. Since the assignment σ is consistent, each variable
V is mapped to an element of ∆ω, but since Topω̃ = ∆ω, where ω̃ = µV(ω, σ),
we have that:

µV(ω, σ) |= V v Top

Furthermore, since each variable is assigned to only one element, given the
definition of the mapping function:

µV(ω, σ) |= ](V ) = 1

We have proved that µV(ω, σ) is a model of the knowledge base. By hypothesis
the implication holds, so:

µV(ω, σ) |= ](Q(V)) ≤ 1

But according to Theorem 10 we have that ω / σ  ω̃ and, applying Theorem
2, we can conclude that:

Q(V)ω/σ = τ(Q(V))ω̃

or, in other words, that:
ω / σ |= ](Q(V)) ≤ 1

Since the definition of query evaluation we have that:

‖Qω(σV)‖ ≤ 1

Assuming that Q(V) is an access function, but by contradiction, that the
implication does not hold, let ω′ be a model of the knowledge base s.t.:

ω′ 6|= ](τ(Q(V))) ≤ 1

or, in other words, that: ∥∥∥τ(Q(V))ω′
∥∥∥ > 1

Applying the πV project function, we obtain a pair 〈ω, σ〉 s.t.
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• σ is consistently defined, since ω′ |= V v Top, ](V ) = 1;

• according to Theorem 11 and to Theorem 4, since ω′ |= τ(W) ∧ K̃B the
world state ω is legal;

• applying result of Theorem 2 we can conclude also than:

Q(V)ω/σ = τ(Q(V))ω′

Since the query is an access function, the evaluation of the query provided the
pair ω, σ is s.t.:

‖Qω(σ)‖ ≤ 1

Applying the definition of query evaluation, we can establish that:∥∥∥τ(Q(V))ω′
∥∥∥ ≤ 1

proving the claim.

Proposition 1. Given an implication φ |= ψ where φ and ψ are C2 sentences,
the problem of checking whether the implication holds is in coNEXP.

Proof. Since the language is closed under negation, the implication problem can
be easily reduced to an instance of the corresponding unsatisfiability problem
of the sentence:

φ ∧ ¬ψ

that is solvable in coNEXP, since according to [PH05] the satisfiability problem
is in NEXP, even allowing for succinct number encoding.

Now, we can provide a basic complexity result regarding the problem of
deciding whether a query is an access function.

Theorem 13. Given a world specification W and a query Q(V), the problem
of checking if the query is an access function is in coNEXP.

Proof. In order to solve the problem, we can apply the property shown in The-
orem 12, reducing it to a reasoning task in C2 logics.

The encoding is clearly linear in the size of the input, while, the correspond-
ing implication problem is in coNEXP (see Proposition 1), since we are looking
for a counterexample as a model of the sentence φ defined as:

φ ,
∧

CvD∈K̃B
V∪τ(W)

∀x.πx(C)(x)→ πx(D)(x)

∧
∧

o:C∈K̃B
V∪τ(W)

πx(C)(o) ∧ ∃>1x.πx(τ(Q(V)))(x)

Where πx is a standard translation function from Description Logics expressions
to first-order predicate logic formulas in the variable x introduced in Section
3.2.2. In other words, we need to check that the sentence φ is not satisfiable,
hence we have to solve an instance of UNSATC2.
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So far we have presented and analyzed the properties of the query language
of the framework and the usage of variable symbols. Now, we have also to show
how they can be used in order to deal with object instantiation: since newly
created objects are essentially anonymous, we need to name them so that we
are able to referring them in subsequent operations. So we introduce a special
kind of variable, whose values are bound to newly instantiated objects.

Definition 14 (Instantiation assignment). Given a set of variable names V
and domain ∆, s.t. ‖V‖ ≤ ‖U \∆‖, an instantiation assignment σ′V consistent
w.r.t. the provided domain is an injective function from V to the set U \∆.

Lemma 11. Given a set of variable names V and world state ω, an instantia-
tion assignment for V exists iff the world state has room for at least ‖V‖ newly
created elements.

Proof. Let n be the cardinality of the set δ = U \ ∆, if n ≥ ‖V‖ then it is
possible to assign to each variable name V a distinct element in δ.

If σ′V is an instantiation assignment the codomain contains exactly n = ‖V‖
elements (it is an injective function), but by the definition we have also that
cod(σ′V) ⊆ δ.

Like ordinary variables, also instantiation variables can be accommodated
as singleton concept names, but their assignment is outside the current active
domain. Since each instantiation variable is a new distinct object, the assign-
ment function must map different names to different instances, i.e., must be
an injective function. Essentially, the new interpretation domain must grow in
order to include at least the new elements defined, but since we need to en-
force a minimal-change semantics, we need that the expansion is as smallest as
possible, in terms of set cardinality.

Definition 15 (Extended interpretation with instantiation). Given a model,
i.e., a world state, ω = 〈∆ω, ·ω〉, a variable assignment σX on ∆ω, and a con-
sistent instantiation assignment σ′Y, s.t. cod(σ′Y)∩∆ω ⊆ ∅ and X∩Y ⊆ ∅, the
extended interpretation ω / 〈σX, σ

′
Y〉 is a new structure s.t.:

• the interpretation domain ∆ω′ is the smallest subset of U s.t.:

∆ω ∪ cod(σ′Y) ⊆ ∆ω′

• the interpretation function ·ω′ is the same as ω for each name not in X∪Y,
while each X ∈ X is interpreted as:

Xω′ = σX(X)

and each Y ∈ Y is interpreted as:

Y ω′ = σ′Y(Y )

Lemma 12. Given a model, i.e., a world state, ω = 〈∆ω, ·ω〉, a variable assign-
ment σX on ∆ω, a consistent instantiation assignment σ′Y, s.t. cod(σ′Y)∩∆ω ⊆ ∅
and X ∩Y ⊆ ∅. Then, the domain of the extended interpretation is:

∆ω′ = ∆ω ∪ cod(σ′Y)
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Proof. According to the definition ∆ω ∪ cod(σ′Y) ⊆ ∆ω′ , therefore we need to
show only that ∆ω′ ⊆ ∆ω∪cod(σ′Y). By contradiction, if there exists an element
x s.t. x ∈ ∆ω′ and x 6∈ ∆ω ∪ cod(σ′Y), we can remove it from ω′ obtaining a
new structure ω′′ where all properties of extended interpretation holds but that
has smaller interpretation domain than ω′.

Lemma 13. Given a model, i.e., a world state, ω = 〈∆ω, ·ω〉, a variable as-
signment σX on ∆ω, a consistent instantiation assignment σ′Y, s.t. X∩Y ⊆ ∅,
then there exists only one extended interpretation.

Proof. Due the previous lemma we can observe that either the extension of
the interpretation domain and the extension of the interpretation function are
defined in a completely deterministic way6.

Theorem 14. Given a world state ω and a variable assignment σX, let σ′1
and σ′2 be two distinct instantiation assignments for the same variable names
Y, s.t. X ∩Y ⊆ ∅. Then, the two structures ω′1 and ω′2 obtained as extended
interpretations are isomorphic.

Proof. In order to prove the claim we need to provide a bijective function h :
∆ω′1 7→ ∆ω′2 s.t.:

• for each unary predicate name p ∈ A∪X∪Y and for each element x ∈ ∆ω′1 ,
x ∈ pω′1 ↔ h(x) ∈ pω′2 ;

• for each binary predicate name r ∈ P and for each element pair 〈x, y〉 ∈
∆ω′1 ×∆ω′1 , 〈x, y〉 ∈ rω′1 ↔ 〈h(x), h(y)〉 ∈ rω′2 ;

• for each object name o ∈ O and for each element x ∈ ∆ω′1 , x = oω′1 ↔
h(x) = oω′2 .

Such a function can be defined as:

h(x) =

{
x x ∈ ∆ω

σ′2(Y ) σ′1(Y ) = x

This function is well-defined since it is total (dom(h) = ∆ω′1 = ∆ω ∪ cod(σ′1))
and it maps each element of its domain to exactly one element of its codomain.

It is also a surjective function, in fact, assuming that exists an element
y ∈ ∆ω′2 s.t. y 6∈ cod(h) we can distinguish two cases:

• y ∈ ∆ω, but by definition h(y) = y, then y ∈ cod(h);

• y ∈ cod(σ′2), then exists a variable name Y s.t. σ′2(Y ) = y, but there also
exists an element x s.t. σ′1(Y ) = x, hence y = h(x).

To show that the function is also injective we consider three main cases (there
are four cases, but one can be ignored for symmetry). By contradiction we
assume that exist two distinct elements x1 and x2 s.t. h(x1) = h(x2):

1. both elements belong to ∆ω: the function h restricted to this domain is the
identity function, x1 6= x2 and, consequently, h(x1) = x1 6= x2 = h(x2);

6The argument is quite similar to this one used in the proof of Lemma 3.
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2. both elements belong to ∆ω′1 \ ∆ω: since x1 6= x2 then there exists two
variable names Y1 and Y2 s.t. σ′1(Yi) = xi, but, since σ′2 is also injective
h(x1) = σ′2(Y1) 6= σ′2(Y2) = h(x2);

3. x1 ∈ ∆ω and x2 ∈ ∆ω′1 \ ∆ω: by definition h(x1) ∈ ∆ω, while h(x2) ∈
∆ω′2 \∆ω, then h(x1) 6= h(x2).

We have shown that the function h is a bijection between the two interpre-
tation domains, therefore we need to prove that it is also an homomorphism.

Let o be an object name interpreted as oω ∈ ∆ω, since the definition of
extended interpretation we have also that:

oω = oω′1 = oω′2

Since oω ∈ ∆ω, then h(oω) = oω.
Let r be a binary relation name in P, also in this case, due the definition of

extended interpretation, we can establish that:

rω = rω′1 = rω′2

For each pair 〈x, y〉 ∈ ∆ω × ∆ω we have that 〈x, y〉 = 〈h(x), h(y)〉 and since
rω ⊆ ∆ω × ∆ω, we can conclude that 〈x, y〉 ∈ rω′1 ↔ 〈h(x), h(y)〉 ∈ rω′2 . For
other element pairs, we remark that:

• ((∆ω′1×∆ω′1)\(∆ω×∆ω))∩rω′1 ⊆ ∅ and ((∆ω′2×∆ω′2)\(∆ω×∆ω))∩rω′2 ⊆ ∅,

• given a pair 〈x, y〉 ∈ (∆ω′1 × ∆ω′1) \ (∆ω × ∆ω), the corresponding pair
〈h(x), h(y)〉 is contained in (∆ω′2 ×∆ω′2) \ (∆ω ×∆ω).

In other words, the other pairs cannot be contained into the extension of the re-
lation as their images through the mapping h. The argumentation is exemplified
in Figure 3.2.

For unary predicate names in A ∪ X, a similar argument holds, while for
unary predicate names in Y the homomorphism property is enforced by the
definition of the mapping function h itself.

We have proved that given a world state and a variable assignment, the
instantiation assignment is quite irrelevant, since all valid extended interpreta-
tions are isomorphic at least w.r.t. the domain alphabet. In other words, every
interpretation is indistinguishable from each other using the ALCQI language:
as shown in [IL90] and related works, C2 is invariant under the 2-pebble game
with counting, which is a weaker condition than isomorphism. Moreover, since
the object names are restricted to the common domain subset, these structures
are also indistinguishable using nominal-enriched description logic or first-order
languages.

Given a domain specification 〈A,P,O〉, a set of variable names X and the
corresponding knowledge base K̃B

X
, let Y be a set of instantiation variable

names, s.t. X ∩ Y ⊆ ∅, we define a new knowledge base K̃B
X,Y

on the al-
phabet 〈A∪X∪Y∪ {Top,Top′,New} ,P,O〉 adding axioms resulting from the
instantiation of axiom templates in the schema ∆KBI(Top′) presented in Table
3.5.

We accordingly extend also the definition of µV, introducing the new map-
ping function µX,Y(ω, σX, σ

′
Y) s.t.:
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∆ω′
1 ×∆ω′

1

∆ω ×∆ω

∆ω′
2 ×∆ω′

2

〈x1, y1〉

〈h(x1), h(y1)〉

〈x2, y2〉

〈x3, y3〉

〈h(x2), h(y2)〉

〈h(x3), h(y3)〉

rω

Figure 3.2: An example of the isomorphism h applied to a binary relation r

Table 3.5: The axiom schema ∆KBI(Top′)

Top′ ≡ Top t
⊔

Y ∈Y

Y∧
Y ∈Y

Y v Top′ u ¬Top∧
Y ∈Y

](Y ) = 1∧
Y ∈Y,Y ′∈Y,Y 6=Y ′

Y u Y ′ v ⊥
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• the interpretation domain is the whole universe (∆ω̃ = U);

• the interpretation of concepts, roles and objects is preserved (Nω = N ω̃);

• the interpretation of Top is the active domain of ω (Topω̃ = ∆ω);

• the interpretation of New is U \∆ω;

• the interpretation of Top′ is the interpretation domain of ω′, where ω′ is
the extended interpretation ω / 〈σX, σ

′
Y〉;

• the interpretation of variable auxiliary concepts is defined according to
the assignment (σ(V ) = V ω̃).

We can also define an inverse projection function πX,Y that, given a structure
ω̃ that is a model for the new knowledge base, returns a triple 〈ω, σX, σ

′
Y〉 s.t.

ω̃ = µX,Y(ω, σX, σ
′
Y).

Theorem 15. Given a world state ω having room for at least ‖Y‖ new elements,
and a consistent variable assignment σX, then for any consistent instantiation
assignment σ′Y, s.t. cod(σ′Y) ∩ ∆ω ⊆ ∅ and X ∩ Y ⊆ ∅, the interpretation

µX,Y(ω, σX, σ
′
Y) is a model of the knowledge base K̃B

X,Y
.

Proof. Given the hypothesis of enough room in the set U\∆ω, such an instanti-
ation assignment exists. Let σ′Y be such an instantiation assignment: according
to Theorem 3, using the function µ we can embed the world model into a struc-
ture that is surely a model for the K̃B ⊂ K̃B

X,Y
axioms. In order to prove

the claim we need to show that also other axioms hold. Since the assignment
σ is consistent, each variable X ∈ X is mapped to an element of ∆ω, but since
Topω̃ = ∆ω, where ω̃ = µX,Y(ω, σX, σ

′
Y), we have that:

ω̃ |= X v Top

Furthermore, since each variable is assigned to only one element, given the
definition of the mapping function:

ω̃ |= ](X) = 1

We notice, given the definition of mapping function, that:

Top′
ω̃ = ∆ω′

Applying Lemma 12, we obtain that:

Top′
ω̃ = ∆ω ∪ cod(σ′Y)

According to the definition of the mapping function for the concept Top:

Top′
ω̃ = Topω̃ ∪ cod(σ′Y) (3.2)

Since the definition of codomain of a function, we have that:

cod(σ′Y) =
⋃

Y ∈Y

{σ′Y(Y )}
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Applying the definition of mapping function for variable names, we establish
that:

cod(σ′Y) =
⋃

Y ∈Y

Y ω̃

In other words, replacing back into Eq. 3.2:

Top′
ω̃ = Topω̃ ∪

⋃
Y ∈Y

Y ω̃

Hence, applying the standard semantics, we obtain that:

ω̃ |= Top′ ≡ Top t
⊔

Y ∈Y

Y

Since also the instantiation assignment is valid, each variable Y ∈ Y is assigned
to a distinct element, thus we have that:

ω̃ |= ](Y ) = 1

and, given the injectivity property of the assignment:

ω̃ |= Y u Y ′ v ⊥

for any pair Y ∈ Y, Y ′ ∈ Y s.t. Y 6= Y ′. We point out that the result does
not rely on the specific instantiation assignment, so it can be generalized to any
consistent one, demonstrating the claim.

Corollary 2. Given a world state ω having room for at least ‖Y‖ new ele-
ments, and a consistent variable assignment σX, the knowledge base K̃B

X,Y
is

satisfiable.

Theorem 16. Let ω̃ be a model of the knowledge base K̃B
X,Y

and let 〈ω, σX, σ
′
Y〉

be a triple s.t. ω̃ = µX,Y(ω, σX, σ
′
Y), then:

ω  ω̃

on the concept alphabet A, and:

ω / σX  ω̃

on the concept alphabet A ∪X, and:

ω / 〈σX, σ
′
Y〉 ω̃

Proof. Since ω̃ is a model for the knowledge base K̃B
X,Y

(Top′) and it strictly
contains the corresponding knowledge base K̃B

X
we can apply Theorem 11 to

prove the claim. We point out that axioms related to cardinality and disjoint-
ness enforce the interpretation of variable names to be suitable as instantiation
variable assignment, since each concept Y is interpreted as distinct singleton
element over the domain Top′

ω̃ \Topω̃. In order obtain such result we need also
to show that:

〈ω, σX〉 = πX(ω̃)
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but, given the definition of mapping and corresponding projection functions πX

and πX,Y, they are identical excluding the part involving instantiation variables,
which in this case can be ignored.

To prove the last claim, since the assignment are well-founded, we need
only to show that the interpretation domain is also well-founded. According to
Lemma 12 the following constraint must hold:

∆ω′ = ∆ω ∪ cod(σ′Y)

but since:
ω̃ |= Top′ ≡ Top t

⊔
Y ∈Y

Y

hence, applying the mapping function definition (Top′
ω̃ = ∆ω′ , Topω̃ = ∆ω and

σ(X) = X ω̃), it follows that:

∆ω′ = ∆ω ∪
⋃

Y ∈Y

{σ′Y(Y )}

proving the claim.

3.6 Conclusions

In this chapter we have introduced the basic elements on which the framework
is built.

In particular, we have provided the definition of the meta-model in terms
of syntax and semantics that allows to setup a problem instance related to the
analysis of a service community in a given context by the means of domain and
world specification. Moreover, the adopted semantics is the standard foundation
of Description Logics and it is mainly compatible with the approaches adopted in
the Semantic Web, while it is also able to deal with incomplete information, since
it is based on the open-world assumption. We have also introduced primitive
language constructs that we will employ in the following to define e-services and
their properties.
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Simple e-services

In this chapter we introduce a basic type of semantic e-service in order to present
main properties related to the analysis of behavioral consistency starting from
the model depicted in Chapter 3.

A simple e-service is essentially an atomic update operator, described follow-
ing the IOPE (inputs, outputs, preconditions and effects) paradigm, that alters
the world state into a new one according to its own definition.

In a more general setting, an e-service can declare multiple possible effects,
which are non-deterministically selected in order to mimic the black-box behav-
ior of the service provider. In this simple version, we assume that an e-service
has only one possible effect defined in its contract1, which is realized once the
service is invoked in a consistent way.

The model based approach to the update, combined with the minimal-change
semantics, allows to easily cope with the frame problem in a fashion quite sim-
ilar to other approaches adopted in the literature. For simple e-services, we
exclude the possibility of any side-effect (i.e., an indirect effect implied by the
world specification), that can potentially interfere with previous assumptions.
Such effects are admitted in several other proposals, generally stemming from
[Win90], where, in order to ensure that the system state is always legal, even
after an update, some model repairs are transparently performed by the agent.
However, we will accordingly remove this limitation in the following, allowing
for some kind of update repair strategy: we aim at obtaining both a suitable
(e.g., restricting the repair search space to a neighborhood of the update oper-
ator in terms of underlying models) and decidable solution. As we show in the
rest of the chapter, these properties are tightly bounded.

In order to reason about e-services specification employing the first-order
fragment C2, introduced in Section 3.2.1, we need to express the formalization
of the update semantics in terms of a suitable logic theory. We start from a
domain definition based upon a DL knowledge base that describes properties
and constraints of an admissible state, intended in terms of extensions of the
predicate symbols, and we aim at reasoning about the effects of e-service exe-

1However, some minor forms of non-determinism are also allowed in simple e-services.
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cutions also denoted in terms of predicate interpretation extensions. In other
words, it is possible to reify the update introducing new concepts and relations
whose extensions correspond to the ones in the state resulting from the update.
In order to achieve this result, we rely upon the notion of embedding a world
state structure, or a world state transition specification, into an interpretation
of an ad hoc built theory, stating a correspondence between the semantic prop-
erties (satisfiability or entailment) of such a kind of logical formalization and
the state transition system which is typically used to describe the semantics of
an e-service.

4.1 Syntax

In this section we briefly present the definition of the syntactical primitives,
which we will employ to define e-services in the rest of the work.

Definition 16 (Simple e-service). Given a domain specification 〈A,P,O〉, a
simple e-service specification S is a quadruple formed by:

• a (possibly empty) finite set of input variable names XS;

• a (possibly empty) finite set of output or instantiation variable names YS;

• a (possibly empty) finite set of invocation precondition constraints PS;

• a simple effect ES.

Informally, according to the IOPE paradigm, a service is defined specifying
the values required for its execution, the values resulting from the execution
itself2, the conditions under which it can be requested by a client, and the
updates performed, if any.

Definition 17 (Service community). A service community is a set S of e-service
specifications built over the same domain specification.

Only services belonging to the same community can be directly compared or
composed, otherwise, since different domain specifications can employ different
names or assign different meanings to the same name, a preliminary reconcilia-
tion of the knowledge bases is required in order to combine them (e.g., object
renaming, inter-schema assertion definition). In other words, a community of
services agrees upon the semantics of shared specifications.

Definition 18 (Atomic precondition term). Let XS be the input variable names
of a service S defined in the domain 〈A,P,O〉. An atomic precondition term,
which is suitable for such a service, is a pair 〈s,Q(X)〉 where:

• s ∈ {+,−} is the sign of the precondition (positive or negative);

• Q(X) is a parameterized query over the domain specification in the vari-
ables X ⊆ XS.

2Since we are specifically addressing world-altering rather than information-gathering ser-
vices, the output values are related only to the action performed.
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Definition 19 (Precondition constraint). Let S be a service having the set XS

as its input variable names. An invocation precondition constraint P is any
finite arbitrary set of atomic precondition terms on such input variables.

Roughly speaking, a precondition constraint is a conjunction of positive
(resp. negative) atomic conditions that are satisfied if the query result is not
empty (resp. is empty) given an input variable assignment and a world state. A
set of precondition constraints is interpreted as a disjunction of such constraints:
the service invocation preconditions hold if at least a constraint is satisfied. In
other words, the service preconditions are expressed in a kind of disjunctive
normal form.

In the rest, we can employ also the following alternative syntax for the
specification of conditions (e.g., preconditions):

C,C ′ −→ C and C ′ | C or C ′ | not C ′ |Q(X)

A condition is represented as an ordinary boolean expression having DL concept
expressions as atoms, that is converted in the DNF3.

Definition 20 (Positive effect argument). Let XS be the input variable names
of a service S defined in the domain 〈A,P,O〉, and let YS be the corresponding
output variable names. A positive effect argument is any element Y ∈ YS or
any parameterized query Q(X) over the domain specification in the variables
X ⊆ XS.

Definition 21 (Negative effect argument). Let XS be the input variable names
of a service S defined in the domain 〈A,P,O〉. A negative effect argument is
any parameterized query Q(X) over the domain specification in the variables
X ⊆ XS.

Definition 22 (Atomic concept effect). Let XS be the input variable names of
a service S defined in the domain 〈A,P,O〉, and let YS be the corresponding
output variable names. An atomic concept effect, that is suitable for such a
service, is a triple 〈s,A, a〉 where:

• s ∈ {+,−} is the sign of the effect (insert or delete);

• A ∈ A is the target concept name;

• a is the argument of the update (positive or negative) according to the sign
of the effect.

Definition 23 (Atomic role effect). Let XS be the input variable names of a
service S defined in the domain 〈A,P,O〉, and let YS be the corresponding
output variable names. An atomic role effect, that is suitable for such a service,
is a quadruple 〈s, P, l, r〉 where:

• s ∈ {+,−} is the sign of the effect (insert or delete);

• P ∈ P is the target role name;

• l and r are the arguments of the update (positive or negative) according to
the sign of the effect.

3We assume that the impact on the input specification size of this encoding is negligible.
Whatever, provided complexity results are assuming the normal form encoding.
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Definition 24 (Simple effect). A simple effect E for a service S is an arbitrary
set of atomic concept and role effects built according to its variable names and
domain specification.

Roughly speaking, a simple effect specifies which elements (or pair of ele-
ments) are inserted or removed from a set (or from a binary relation). Generally
each atomic effect can affect more elements since its domain is denoted using
queries4.

For the sake of notational simplicity we suppose that only a service S is
taken into account, so it can be omitted from formulas when it is clear from the
context.

Moreover, an atomic effects can be more written also using the notation:

+A(a),−A(a),+P (l, r),−P (l, r)

An idempotent effect is simply expressed as an empty effect set.

Example 2. Let W be an axiomatization of a simple domain, where people
interact with e-services provided by public administrations. W contains the as-
sertions reported in Table 4.1, where concept and role names have the intuitive
meaning. The same domain is also depicted as conventional Entity-Relationship
diagram (ERD) in Figure 4.1.

Table 4.1: An example world specification W

∃residentIn−.> v Town

∃residentIn.> v Citizen

∃authorizedFor.> v Citizen

Citizen v (= 1 residentIn>)
∃locatedIn−.> v Town

Shop v (= 1 locatedIn>)
∃registeredIn−.> v Town

Vehicle v (= 1 registeredIn>)
∃owner−.> v Citizen

Shop v (≤ 1 owner >)
Good v (≤ 1 owner >)

Citizen u Town v ⊥
Citizen u Good v ⊥
Good u Town v ⊥
Shop u Town v ⊥
Shop u Good v ⊥

Shop u Citizen v ⊥
Vehicle v Good

town1 : Town

town2 : Town

According to the given axiomatization, each good has an owner, while vehicles
must be registered to the local administrative department. Suppose, for example,
that there exists a service S that allows a citizen to change its own residence
and to specify the new one. It can be modeled as:

X = {x1, x2}
Y = ∅
P = x1 u Citizen and x2 u Town

E =
{
−residentIn(x1,∃residentIn−.x1),+residentIn(x1, x2)

}
4Intuitively the approach aims at mimicking the UPDATE ... WHERE ..., DELETE ...

WHERE ... and SELECT ... INTO ... primitives of the SQL language.
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The input parameters x1 and x2 denote, respectively, the citizen who is asking
for the change and the new residence town. This service is accessible by every
citizen, and allows to select any town as the new residence location. The town
town1 provides also an enhanced version to its inhabitants that ask for a resi-
dence change. Such enriched e-service S1 is restricted only to citizens of town1,
but it is capable also to accordingly change the registration of vehicles belonging
to the requestor, in the sense that the vehicles belonging to the requestor will be
registered to the authority of the new town. Formally speaking, the service is
defined as:

X = {x1, x2}
Y = ∅
P = x1 u ∃residentIn. {town1} and x2 u Town

E =
{
−residentIn(x1,∃residentIn−.x1),+residentIn(x1, x2)

}
∪ {−registeredIn(Vehicle u ∃owner.x1, {town1})}
∪ {+registeredIn(Vehicle u ∃owner.x1, x2)}

As in the previous case, the update effect is obtained by combining insert and
delete primitives.

4.2 Semantics

In this section, we define the semantics of e-service primitives previously pre-
sented and the definition of the system state transition resulting from a service
enactment. We also analyze the accessibility of a service and its correctness in
terms of fulfillment of service contract w.r.t. the enforcing of world constraints.

We start defining the service access condition and the related decision prob-
lem, reducing it to the satisfiability check of a C2 theory.

Definition 25 (Precondition satisfaction). Let S be a service, let ω be a world
state and σX an input assignment. We say that the service preconditions of S
hold in ω w.r.t. σX, iff there exists at least a precondition P ∈ P s.t. for each
atomic precondition 〈s,Q(X)〉 ∈ P :

• if s = +, then the evaluation of the query Q in ω using σ is not empty;

• or, if s = −, then the evaluation of the query Q in ω using σ is empty.

We can denote this condition as ω |= P(σX).

Definition 26 (Accessible e-service). A service S is accessible, w.r.t. a world
specification W, in a legal world state ω iff:

• there is room enough for newly created objects, i.e., (‖YS‖ ≤ ‖U \∆ω‖);

• there exists at least an input assignment σX s.t. service preconditions are
satisfied in the initial state ω w.r.t. the input variable assignment σX.

Given a service specification S, we can build a knowledge base KBP com-
bining axioms of knowledge bases K̃B

n
and K̃B

V
, where n is the size of the
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set YS and V = XS , adding the following boolean axioms:∨
P∈PS

∧
p∈P

γ(p)

where γ is a function defined as:

γ(〈s,Q(X)〉) ,

{
αp : τ(Q) if s = +
τ(Q) v ⊥ if s = −

(4.1)

being αp a new fresh constant name not appearing elsewhere.

Remark 8. We notice that we have built a knowledge base mixing freely TBox
and ABox axioms: indeed, we consider such a knowledge base as a first-order
predicate logic theory, so we are using the DL notation only as a more compact
syntax for first-order sentences. That is meaning, as previously shown, that
a TBox GCI assertion C v D must be read as the FOL sentence ∀x.πx(x) →
πx(D)(x), where πx as the standard translation function from Description Logics
expression language to firs-order, and an ABox assertion o : C must be read as
the sentence πx(C)(o) or ∃x.πx(C)(x), if the object name appears nowhere in
the rest of the theory.

Theorem 17. Given a state ω and an assignment σ, a service S is accessible
from ω using σ iff there exists an interpretation ωS s.t. 〈ω, σ〉 = πV(ωS) and
ωS |= KBP

Proof. Let ωS be a model of the knowledge base KBP : since KBP ⊃ K̃B
n
,

according to Theorem 9, the structure ω obtained using the projection π is a
world state with room enough for new objects. Since KBP ⊃ K̃B

V
, we can

establish also that ωS |= K̃B
V

and the variable assignment σ is well-founded,
according to Theorem 11. In order to complete the proof we need to show that
also preconditions hold. Let P ∗ ∈ PS be a set of atomic preconditions s.t.:

ωS |=
∧

p∈P∗

γ(p)

Since we have assumed that ωS is a model of the knowledge base at least an
element satisfying these constraints must exist. For each p ∈ P ∗, if the sign is
positive (sp = +) we have that:

ωS |= α : τ(Qp)

which means that [τ(Qp)]ω
S 6= ∅; otherwise, if sp = − we can conclude that:

ωS |= τ(Qp) v ⊥

which means that [τ(Qp)]ω
S

= ∅. Applying results of Theorems 11 and 2, we
obtain that there exists a precondition P ∗ s.t. for each atomic precondition
〈s,Q(X)〉 ∈ P ∗:

• if s = + the evaluation of the query is not empty, i.e. Qω(σ) = Qω/σ =
[τ(Qp)]ω

S 6= ∅;
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• otherwise, if s = −, the evaluation of the query is empty, i.e., Qω(σ) =
Qω/σ = [τ(Qp)]ω

S

= ∅.

Let ω be a world state and σ an assignment, s.t. service S is accessible from
ω using σ, extending the mapping function µV accordingly in order to keep into
account also the interpretation of the object spy and of the role aux: then, we
obtain a structure ωS that, according to Theorems 8 and 10, satisfies the axioms
of both knowledge bases K̃B

n
and K̃B

V
.

Since preconditions hold, there exists at least an element P ∗ s.t. for each
atomic precondition 〈s,Q(X)〉 ∈ P ∗:

• if s = + the evaluation of the query is not empty, i.e. Qω(σ) 6= ∅;

• or, if s = − the evaluation of the query is empty, i.e., Qω(σ) = ∅.

Given the definition of query evaluation in terms of extended interpretation we
have that:

Qω(σ) = Qω/σ

Applying Theorem 10 and Theorem 2, we have that:

Qω/σ = [τ(Qp)]ω
S

since ω / σ  ωS . Consequently, for each constraint p ∈ P ∗ having a positive
sign, interpreting αωS

p as any element of the [τ(Qp)]ω
S

and, since it is not empty,
such an element exists, we have that:

ωS |= αp : τ(Qp)

Analogously, for each constraint having a negative sign, since the interpretation
is empty we can establish that:

ωS |= τ(Qp) v ⊥

Hence, ωS is a model of KBP .

Given the previous result and the provided definition of accessible service,
the following properties follow.

Corollary 3. A service S is accessible w.r.t. a world specification W iff the
knowledge base KBP ∧ τ(W) is satisfiable.

Theorem 18. Given a world specification W and a simple e-service S, the
problem of checking if S is accessible is in NEXP.

Proof. According to Corollary 3 we can reduce the check of service accessibility
to the satisfiability of a C2 sentence having a length linear in the size of the
input specification (world and service). The result follows from the observation,
already employed in showing other complexity results, that satisfiability check
problem for this language is solvable non-deterministic exponential time.

Now, we introduce the formal definitions related to the semantics of the
state update adopted in our framework. Roughly speaking, we denote sets
of elements or element pairs affected by an update specification defined using
the syntax previously introduced. Assuming a minimal-change semantics, such
definitions are employed in the following to provide the definition of the system
state transition relation.
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Definition 27 (Concept insert set). Let E be a simple service effect specifica-
tion, A ∈ A a concept name, ω a world state, σX an input variable assignment
consistently defined w.r.t. ω, the object insert set for the concept A is defined
as:

A+(ω, σX) =

 ⋃
〈+,A,Q(X)〉∈E

Qω(σX)

 \Aω

Definition 28 (Concept insert set with instantiation). Let E be a simple ser-
vice effect specification, A ∈ A a concept name, ω a world state, σX and σ′Y
respectively an input and output variable assignment consistently defined w.r.t.
ω. The object insert set for the concept A is defined as:

A+(ω, σX, σ
′
Y) =

⋃
〈+,A,Y 〉∈E

{σ′Y(Y )} ∪A+(ω, σX)

The concept insert set denote the extension of the model that is affected by
the update as element that will be added to the interpretation of the concept
name A. Analogously, we can define the set of removed elements and affected
pairs.

Definition 29 (Concept delete set). Let E be a simple service effect specifica-
tion, A ∈ A a concept name, ω a world state, σX an input variable assignment
consistently defined w.r.t. ω. The object delete set for the concept A is defined
as:

A−(ω, σX) =

 ⋃
〈−,A,Q(X)〉∈E

Qω(σX)

 ∩Aω

Definition 30 (Role insert set). Let E be a simple service effect specification,
P ∈ P a concept name, ω a world state, σX an input variable assignment
consistently defined w.r.t. ω. The link insert set for the role P is defined as:

P+(ω, σX) =

 ⋃
〈+,P,Q(X),Q′(X)〉∈E

Qω(σX)×Q′ω(σX)

 \ Pω

Definition 31 (Role insert set with instantiation). Let E be a simple service
effect specification, P ∈ P a concept name, ω a world state, σX and σ′Y re-
spectively an input and output variable assignment consistently defined w.r.t. ω.
The link insert set for the role P is defined as:

P+(ω, σX, σ
′
Y) =

⋃
〈+,P,Y,Y ′〉∈E

{〈σ′Y(Y ), σ′Y(Y ′)〉}

∪
⋃

〈+,P,Y,Q(X)〉∈E

{σ′Y(Y )} ×Qω(σX)

∪
⋃

〈+,P,Q(X),Y 〉∈E

Qω(σX)× {σ′Y(Y )} ∪ P+(ω, σX)
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Definition 32 (Role delete set). Let E be a simple service effect specification,
P ∈ P a role name, ω a world state, σX an input variable assignment consis-
tently defined w.r.t. ω, the link delete set for the role P is defined as:

P−(ω, σX) =

 ⋃
〈−,P,Q(X),Q′(X)〉∈E

Qω(σX)×Q′ω(σX)

 ∩ Pω

The provided definitions cover all cases that can occur in the specification
of service effects using the previously defined language mixing different kind of
update arguments. In order to provide a consistent definition of service effects,
we need also to verify that, for every concept or role, the insert and delete sets
are always distinct, as done in other similar approaches (e.g., [BLM+05a]) in
the definition of consistent service specification. This constraint ensures that a
service can never state that an element (or a link between elements) is, at the
same time, added to a set and removed from it. In a more declarative fashion,
we are interested only in services that have no contradicting effects, although
alternative approaches can be devised imposing an ordering relation to effect
specifications that are interpreted in a more procedural fashion (i.e., update
statements). Since instantiation variables are taken into account only in insert
statements (positive effect) and they cannot induce any clash, they can be safely
ignored at this stage.

Definition 33 (Consistent simple e-service effect). Given a service S with a
simple effect E, let W be a world specification and let PS be the service invoca-
tion preconditions, S is consistently defined iff for each legal world state ω and
for each consistent assignment, there is no element or element pair that belongs
both to the insert set and the delete set of some concept or role.

Example 3. Both services introduced in Example 2 are not consistently defined:
in fact their specification does not prevent the ambiguous case when the current
and new towns are the same one. This is a typical case of idempotent operation
that is not allowed in our framework, unless it is explicitly stated using an empty
effect set, since it can potentially lead to semantic inconsistencies.

So in order to provide a consistent service effect specification w.r.t. the do-
main constraints, we need to adjust the service preconditions introducing another
negative atomic precondition as not x2 u ∃residentIn−.x1 and not x2 u {town1}.

Given the knowledge base KBP for a service S and an effect specification
E for the same service, we define a new knowledge base KBE adding axioms
obtained by the instantiation for each concept A ∈ A and role name P ∈ P of
the axiom schema ∆KBE , presented in Table 4.2, where A+

E , A
−
E , P

+
E , P

−
E are

resp. the names of the new auxiliary concepts and roles introduced for every
concept A or role P in the domain specification.

Theorem 19. Given a world specification W a service effect E is consistently
defined iff for each concept name A ∈ A we have that:

KBE ∧ τ(W) |= A+
E uA

−
E v ⊥

and for each role name P ∈ P:

KBE ∧ τ(W) |= ¬∃x, y.P+
E (x, y) ∧ P−

E (x, y)
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Figure 4.1: An example world specification W as ERD

Table 4.2: The axiom schema ∆KBE

A+
E ≡

 ⊔
〈+,A,Q(X)〉∈E

τ(Q)

 u ¬A
A−E ≡

 ⊔
〈−,A,Q(X)〉∈E

τ(Q)

 uA
∀x, y.P+

E (x, y) ↔

 ∨
〈+,P,Q(X),Q′(X)〉∈E

τ(Q)(x) ∧ τ(Q′)(y)

 ∧ ¬P (x, y)

∀x, y.P−
E (x, y) ↔

 ∨
〈−,P,Q(X),Q′(X)〉∈E

τ(Q)(x) ∧ τ(Q′)(y)

 ∧ P (x, y)
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Proof. Assuming that the service is accessible, otherwise the claim is easily
proved, and that the effect is consistently defined, but, by contradiction, that
the implication does not hold. In other words, there exists at least a model
ω̂ |= KBE ∧ τ(W) s.t. there is an element x ∈ ∆ω̂ s.t. for some concept A we
obtain that:

ω̂ |= x : A+
E uA

−
E

or that there is a pair 〈x, y〉 ∈ ∆ω̂ ×∆ω̂ s.t. for some role P :

ω̂ |= P+
E (x, y) ∧ P−

E (x, y)

W.l.o.g. we prove the claim in the first case, the latter can be easily obtained
applying the same argument. Given Theorem 11, applying the projection func-
tion πX we obtain a model ω and an input variable assignment σ s.t. their
extended interpretation is embedded into ω̂. Since ω̂ |= x : A+

E , given the def-
inition axioms of the concept A+

E we have the an atomic effect 〈+, A,Q〉 s.t.
ω̂ |= x : τ(Q) must exist. Analogously we can prove that also another effect
〈−, A,Q′〉 s.t. ω̂ |= x : τ(Q′) must exist. But applying Theorem 2 we obtain
also that:

ω / σ |= x : Q, x : Q′

in other words, that x ∈ Qω(σ) and x ∈ Q′ω(σ). According to definition of
insert and delete set (ignoring possibly instantiated objects), we can conclude
that:

x ∈ A+(ω, σ) ∩A−(ω, σ)

which means that exists a pair ω, σ, consistent w.r.t. world specification and
service invocation preconditions that violates the service consistency assump-
tion.

Now we assume that the implication holds, but, by contradiction, that the
service effect is not consistently defined. In other words, at least a pair ω, σ
s.t. their components are consistent with world specification W and service
invocation precondition PS but that there exists an element x s.t.:

x ∈ A+(ω, σ) ∩A−(ω, σ)

or there exists a pair 〈x, y〉 s.t.:

〈x, y〉 ∈ P+(ω, σ) ∩ P−(ω, σ)

Applying the mapping function µX we build a new structure ω′ that is a model
for the axioms of the knowledge base KBP , since Theorem 17. We add to the
structure also the interpretation of new concept and role names applying the
following construction: [

A+
E

]ω̂
= A+(ω, σ)[

A−E
]ω̂

= A−(ω, σ)[
P+

E

]ω̂
= P+(ω, σ)[

P−
E

]ω̂
= P−(ω, σ)
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defining a new interpretation ω̂ that is yet a model of KBP , the interpretation
of other names is untouched, but that is also a model of other axioms. For
example, considering the axiom:

∀x, y.P−
E (x, y)↔

∨
〈−,P,Q(X),Q′(X)〉∈E

τ(Q)(x) ∧ τ(Q′)(y) ∧ P (x, y)

and let 〈x∗, y∗〉 be a pair s.t. 〈x∗, y∗〉 ∈ [P−
E ]ω̂. According to the definition of

the model we have that:
〈x∗, y∗〉 ∈ P−(ω, σ)

Given the definition of the role delete set there must exist an effect 〈−, P,Q,Q′〉
s.t.

〈x∗, y∗〉 ∈ Qω(σ)×Q′ω(σ) ∩ Pω

Since the structure ω and the assignment σ are embedded into ω′ and ω̂, we
have also that:

• 〈x∗, y∗〉 ∈ P ω̂ since 〈x∗, y∗〉 ∈ Pω;

• x∗ ∈ [τ(Q)]ω̂ since x∗ ∈ Qω(σ);

• y∗ ∈ [τ(Q)]ω̂ since y∗ ∈ Qω(σ);

According to standard first-order semantics, we have that:

ω̂ |= τ(Q)(x∗) ∧ τ(Q′)(y∗) ∧ P (x∗, y∗)

and, hence, that:

ω̂ |= ∀x, y.P−
E (x, y)→

∨
〈−,P,Q(X),Q′(X)〉∈E

τ(Q)(x) ∧ τ(Q′)(y) ∧ P (x, y)

Let 〈x∗, y∗〉 be a pair s.t. there exists an effect 〈−, P,Q,Q′〉 s.t.

ω̂ |= τ(Q)(x∗) ∧ τ(Q′)(y∗) ∧ P (x∗, y∗)

According to standard first-order semantics, we establish that: x∗ ∈ [τ(Q)]ω̂,
y∗ ∈ [τ(Q′)]ω̂ and 〈x∗, y∗〉 ∈ P ω̂. Since the structure ω with the assignment
σ are embedded into ω′ and ω̂, those statements imply that: 〈x∗, y∗〉 ∈ Pω,
x∗ ∈ Qω(σ) and y∗ ∈ Qω(σ).

Applying the definition of role delete set we can conclude that:

〈x∗, y∗〉 ∈ P−(ω, σ)

So, given the construction applied to build the structure ω̂, we have also that:

ω̂ |= P−
E (x∗, y∗)

So we have also proved that:

ω̂ |= ∀x, y.P−
E (x, y)→

∨
〈−,P,Q(X),Q′(X)〉∈E

τ(Q)(x) ∧ τ(Q′)(y) ∧ P (x, y)

Extending such argumentation to other kind of update construct, we can derive
that the interpretation ω̂ is a model for the knowledge base KBE too.
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Since the hypothesis, the built model is s.t., for each concept name A ∈ A
we have that:

ω̂ |= A+
E uA

−
E v ⊥

and for each role name P ∈ P:

ω̂ |= ¬∃x, y.P+
E (x, y) ∧ P−

E (x, y)

But, as contradiction hypothesis, we have assumed that exists at least an ele-
ment x ∈ A+(ω, σ) ∩ A−(ω, σ) for some A, but given the construction we have
also that:

x ∈ [A+
E ]ω̂ ∩ [A−E ]ω̂

which means that:
ω̂ 6|= A+

E uA
−
E v ⊥

contradicting the initial hypothesis.

Theorem 20. Given a world specification W and a service effect E of a service
S, the problem of checking if the effect is consistently defined is in coNEXP.

Proof. As done for other cases previously analyzed, we can solve the problem
applying the property proved in Theorem 19, polynomially reducing it to a
reasoning task in C2 logics, that according to Proposition 1 can be solved in
coNEXP.

Remark 9. If we assume the world specification W as fixed for a given service
community S, the problem reduction is only linear in the size of the e-service
specification: such a property holds for most of subsequent reductions.

Given the previous definitions, we can finally introduce dynamic aspects,
defining the transition relation between system states resulting from the enact-
ment of a service. As stated in the preliminary assumption, we are ignoring
any other source of change of the system state: it cannot evolve autonomously
and there is any other interacting agent. Despite this is a quite limiting as-
sumption in planning applications (e.g., multi-agent systems or robotics), it is
widely adopted in the field of cooperative information systems, since the system
state generally evolves as a consequence of an application request, that can be
modeled as an e-service, and different requesting agents are not clashing on the
same domain objects5.

Definition 34 (Simple e-service successor relation). Given a pair of world states
ω and ω′, an input and output variable assignments σX and σ′Y consistently
defined w.r.t. ω, we say that ω′ is a (potential) successor state of ω, resulting
from the execution of an e-service S, that realizes the effect E and instantiating
the set Y, iff:

• the interpretation domain ∆ω′ of the successor state is the smallest subset
of U s.t.:

∆ω ∪ cod(σ′Y) ⊆ ∆ω′

5Notably, most of the proposals [NRF06, NRLW06, NRLH06, BTP04] for introducing
transaction management capabilities in web-services middleware lack of strong locking capa-
bilities, since the network is highly asynchronous at least from the application perspective
(long running processes).
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• the interpretation of object names is preserved (oω = oω′);

• for each concept name A ∈ A, the insert set is included in the successor
state interpretation:

Aω′ ⊇ A+(ω, σX, σ
′
Y)

and the delete set is excluded:

Aω′ ∩A−(ω, σX) ⊆ ∅

• for each role name P ∈ P, the insert set is included in the successor state
interpretation:

Pω′ ⊇ P+(ω, σX, σ
′
Y)

and the delete set is excluded:

Pω′ ∩ P−(ω, σX) ⊆ ∅

The set of possible successor states obtainable from a state ω, applying the
effect E of a service using the assignment σX and σ′Y is denoted as:

ΩE(ω, σX, σ
′
Y)

where Y is the set of newly instantiated objects.

Remark 10. Given a pair 〈Y, E〉, the output variable occurrences in effect
definition must belong to the set Y.

Remark 11. In case of simple e-service the instantiation name set is always
YS.

From the previous definition we can be easily shown that:

Lemma 14. The interpretation domain of the successor state ω′ is the same
as the extended interpretation ω / 〈σX, σ

′
Y〉.

Among the potential successor states resulting from the execution of a ser-
vice that realizes its effects, we are interested in the ones that minimally differ
from the initial state according to a notion of minimal-change semantics. In par-
ticular, we adopt a structure-distance metric based on the number of elements
whose interpretation changes from a structure to another: a similar approach in
data reconciliation is adopted, for example, in [LM96]. Since the interpretation
of object names is always the same, they can be thrown out from the definition.

Definition 35 (Symmetric difference distance). Given two interpretation struc-
tures ω and ω′ of a description logic alphabet 〈A,P〉, their distance is defined
as:

d(ω, ω′) ,
∑
A∈A

∥∥∥Aω ]Aω′
∥∥∥+

∑
P∈P

∥∥∥Pω ] Pω′
∥∥∥

where ] denotes the set symmetric difference or disjoint union operator.

The provided distance measure induces a metric space over the set of possible
world states since:

• it is non-negative (d(ω, ω′) ≥ 0);
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• it ensures the identity of indiscernible (d(ω, ω′) = 0 iff ω = ω′);

• it is symmetric (d(ω, ω′) = d(ω′, ω));

• it obeys the triangular inequality (d(ω, ω′) ≤ d(ω, ω′′) + d(ω′′, ω′)).

Such properties for interpretation structures follow directly from the ones of
set symmetric difference operator ]. We are ignoring objects O, since they are
assumed to be immutable through state transitions and constantly interpreted
in any world state.

We can now provide the definition of the transition relation between system
states resulting from the execution of a simple e-service.

Definition 36 (Simple e-service transition relation). Let ω and ω′ be a pair
of world states, s.t. the latter is resulting from the execution of an e-service S
in the state defined by the former, realizing the effect E. Given an input and
an output variable assignments σX and σ′Y consistently defined, there exists a
system state transition from ω to ω′ using the specified e-service effect iff:

• ω′ is a (potential) successor state of ω w.r.t. the given assignments;

• there does not exist any other potential successor state ω′′ of ω, w.r.t. the
same assignments and service effect, s.t. it is closer to ω than ω′ according
to the symmetric difference distance (which means that d(ω, ω′) ≤ d(ω, ω′′)
for each ω′′ ∈ ΩE(ω, σX, σ

′
Y) ).

The concept of service enactment can be formally defined as the following.
Using this concept we are able to easily denote the service outcomes in terms
of both resulting system state and output variable assignment6.

Definition 37 (Simple e-service enactment). Let ω be a world state and σX

a consistent input variable assignment. Given a simple e-service S, the set of
possible enactments contains all the pairs 〈ω′, σ′Y〉 s.t.:

• σ′Y is a consistent instantiation assignment w.r.t. ω;

• ω and ω′ are in transition relation w.r.t. the assignment and the service
effect.

The service enactment can be denoted as S(ω, σX).

Also the embedding relation, introduced at page 33, needs to be extended to
this case since now we need to take into account both input and output variable
assignments and initial and final system states.

Definition 38 (Simple e-service enactment embedding relation). Given a pair
of world states ω = 〈∆ω, ·ω〉 and ω′ = 〈∆ω′ , ·ω′〉, defined on an interpretation
domain that is a subset of U, an input assignment σX and an instantiation
assignment σ′Y both consistent w.r.t. ω, let m be a function that maps each
concept (resp. role) name A (resp. P ) into a new one m(A) (resp. m(P )), let
Top and Topm be new concept names and let ω̂ = 〈U, ·ω̂〉 be an interpretation
over the alphabet 〈A∪X∪Y∪m(A)∪{Top,Topm} ,P∪m(P),O〉. The quadruple

6Given the non-determinism in the object instantiation step, also in this simple case, we
generally have multiple possible enactments.
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〈ω, ω′, σX, σ
′
Y〉 is embedded into the interpretation ω̂ iff the following conditions

hold:

∆ω = Topω̂

∆ω′ = Topω̂
m

Nω = N ω̂

Nω′ = m(N)ω̂

σX(X) = X ω̂

σ′Y(Y ) = Y ω̂∥∥V ω̂
∥∥ = 1

oω = oω̂

for each N ∈ A ∪P, o ∈ O, X ∈ X, Y ∈ Y and V ∈ X ∪Y.

Remark 12. The last definition aims to provide a way to embed a system state
transition into a structure suitable to logically check dynamic system properties.
Intuitively, the structure ω is the initial world state, the structure ω′ is the
enactment resulting structure, while the assignments are respectively the input
provided to the service and the set of objects instantiated by the service itself (if
any).

Example 4. We consider a simple domain specification s.t., let A = {C,D} and
P = {r, s} be resp. the concept and role alphabets, the world state ω, depicted
in Figure 4.2 is given as initial condition, where {x, y, z, w} are some elements
of the interpretation domain U.

∆
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Figure 4.2: An example world state ω
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For example, we assume that the following update statements have been is-
sues during a service enactment:

−r(x,C u ∃r−. {x}),+r(x, z),−D(z),+C(¬C u ∃s. {x})

Considering the structure ω we can easily evaluate DL-query expressions con-
cluding that: [

C u ∃r−. {x}
]ω 3 y

[¬C u ∃s. {x}]ω 3 w

According to the provided semantics, the resulting system state ω′ must be de-
scribed as in Figure 4.3.
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Figure 4.3: An example world state ω′ resulting from updating the state ω

In other words, in order to enforce the update semantics, the ω′ state must
satisfy, among others, the following inter-model assertions:

Dω′ ⊆ Dω \ {z}

Cω′ ⊆ Cω ∪ {w}

rω
′
⊆ (rω ∪ {〈x, z〉}) \ {〈x, y〉}

They cannot be evaluated using standard DL approaches, but if we embed both
structures into a new suitable interpretation ω̂ on the same domain as depicted
in Figure 4.4, we can easily conclude that these assertions can be encoded using
a FOL theory interpreted on this ad-hoc built structure.

As we show in the following, since ω  ω̂ and ω′  m ω̂, we are able to check
relevant features of the enactment ω → ω′ on ω̂ by means of logical inference in
C2.
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Figure 4.4: An example structure ω̂ embedding the transition ω → ω′

From the definitions of world state embedding relation and generalized em-
bedding relations we can easily derive the following property.

Lemma 15. Given a quadruple 〈ω, ω′, σX, σ
′
Y〉 and an interpretation ω̂, s.t. the

quadruple is embedded into it, then:

• the extended interpretation of the initial world state with the assignment
is embedded into the structure ω̂:

ω / 〈σX, σ
′
Y〉 ω̂

• the final world state is embedded, according to the mapping m, into the
structure ω̂:

ω′  m ω̂

Usually, name mapping functions are based upon the service/effect name,
in order to allow for the construction of interpretation structures that capture
multiple enactments at the same time: this will turn useful in order to deal with
non-deterministic services. In the case of simple e-service the default mapping
function is defined as m(x) = x′ while Topm = Top′. In case of multiple service
effects, the default mapping function for an effect E is defined as m(x) = xE

while Topm = TopE .
Given a service S and an effect specification E for the same service, we define

a new knowledge baseKBU
m adding to the knowledge baseKBP∧K̃BX,Y

(Topm)
the axioms obtained by instantiating the schemas ∆KBU (m), reported in Table
4.3, for each concept A ∈ A or role name P ∈ P.
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Table 4.3: The axiom schema ∆KBU (m)

m(A)+ ≡

 ⊔
〈+,A,Q(X)〉∈E

τ(Q)

 u ¬A (4.2)

m(A)− ≡

 ⊔
〈−,A,Q(X)〉∈E

τ(Q)

 uA (4.3)

∀x, y.m(P )+(x, y)↔

 ∨
〈+,P,Q(X),Q′(X)〉∈E

τ(Q)(x) ∧ τ(Q′)(y)

 (4.4)

∧ ¬P (x, y)

∀x, y.m(P )−(x, y)↔

 ∨
〈−,P,Q(X),Q′(X)〉∈E

τ(Q)(x) ∧ τ(Q′)(y)

 (4.5)

∧ P (x, y)

m(A)∗ ≡ m(A)+ t
⊔

〈+,A,Y 〉∈E

Y (4.6)

∀x, y.m(P )∗(x, y)↔ m(P )+(x, y) ∨
∨

〈+,P,Y,Y ′〉∈E

Y (x) ∧ Y ′(y) (4.7)

∨
∨

〈+,P,Y,Q(X)〉∈E

Y (x) ∧ τ(Q)(y)

∨
∨

〈+,P,Q(X),Y 〉∈E

τ(Q)(x) ∧ Y (y)

m(A)∗ v m(A) (4.8)

m(A)+ um(A)− v ⊥ (4.9)

m(A)− v A (4.10)

m(A) u ¬m(A)∗ ≡ A u ¬m(A)− (4.11)
∀x, y.m(P )∗(x, y)→ m(P )(x, y) (4.12)

∀x, y.⊥ ← m(P )+(x, y) ∧m(P )−(x, y) (4.13)

∀x, y.m(P )−(x, y)→ P (x, y) (4.14)

∀x, y.m(P ) ∧ ¬m(P )∗(x, y)↔ P (x, y) ∧ ¬m(P )−(x, y) (4.15)
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The knowledge base KBU
m is defined over the alphabet 〈A′, P ′, O′〉, where

concept names are:

A′ = A ∪m(A) ∪m(A)∗ ∪m(A)+ ∪m(A)− ∪X ∪Y ∪ {Top,New,Topm}

role names are:

P ′ = P ∪m(P) ∪m(P)∗ ∪m(P)+ ∪m(P)− ∪ {aux}

and object names are:
O′ = O ∪ {spy}

Remark 13. We notice that constructs (names and axioms) provided by the
definition of the knowledge base K̃B

n
(aux, spy) are relevant iff n = ‖Y‖ > 0.

Remark 14. The axioms defined in Equations 4.2, 4.3, 4.4, and 4.5 are syn-
tactical extension of corresponding ones in the knowledge base KBE used in
Theorem 19.

As done in previous cases, we define an embedding function that, given an
enactment, builds a new structure that (as we will show in the following) embeds
the enactment itself and is a model of the provided knowledge base. While
previously defined µ-functions take as argument a world state and a possible
variable assignment, the new one requires also the interpretation corresponding
to the resulting world state.

Given a quadruple 〈ω, ω′, σX, σ
′
Y〉, we define an embedding function µ that

maps such structures into another interpretation ω̂, extending the definition
provided at page 50, s.t.:

• the interpretation domain is the whole universe (∆ω̂ = U);

• the interpretation of concepts, roles and objects in the starting state is
preserved (Nω = N ω̂);

• the interpretation of concepts, roles and objects in the final state is pre-
served (Nω′ = m(N)ω̂);

• the interpretation of Top is the active domain of ω (Topω̂ = ∆ω);

• the interpretation of Topm is the active domain of ω′ (Topω̂
m = ∆ω′);

• the interpretation of New is U \∆ω;

• the interpretation of variable auxiliary concepts is defined according to
the assignment (σX(X) = X ω̂ and σ′Y(Y ) = Y ω̂);

• the update-defining concepts and roles are interpreted according to the
corresponding concept (resp. role) insert or delete set ([m(N)+]ω̂ =
N+(ω, σX), [m(N)−]ω̂ = N−(ω, σX), [m(N)∗]ω̂ = N+(ω, σX, σ

′
Y));

• the object spy is assigned to an element of Newω̂, if any;

• the role aux is interpreted as
{
spyω̂

}
× Newω̂.
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The function π computes the inverse of µ, projecting out from an interpretation
ω̂ a quadruple, representing a possible enactment between the world states ω
and ω′ given the variable assignments, and is defined only for structures that
are models of the knowledge base KBU

m.
We, now, show some properties of these functions w.r.t. the embedding

relation.

Lemma 16. Given a quadruple 〈ω, ω′, σX, σ
′
Y〉, and structure ω̂ s.t. ω̂ =

µ(ω, ω′, σX, σ
′
Y), then the quadruple is embedded into ω̂.

Proof. The claim follows from the observation that the function µ simply apply
the definition of the embedding relation itself. We point out that, since there
is a choice step, essentially regarding the selection of the spy-point element, the
function is non-deterministic or it can be considered as a multi-function.

Lemma 17. Given a model ω̂ of KBU
m, let 〈ω, ω′, σX, σ

′
Y〉 be a tuple s.t.:

〈ω, ω′, σX, σ
′
Y〉 = π(ω̂)

then it is embedded into ω̂.

Proof. Since the structure ω̂ is a model of the knowledge base KBU
m, the cardi-

nality axioms ensures that from the interpretation of variable related auxiliary
concepts it is always possible to build consistent variable assignments as ob-
served in the proof of Theorem 16. The embedding relation among the quadru-
ple and the structure follows from the definition of the projection function π
and the previous lemma.

On this base, we can present a first main result about embedded structures
and knowledge bases previously defined, showing that the latter ones are able
to caught the enactment update semantics.

In other words, an interpretation structure that is a model of a suitable
knowledge base, obtained from the instantiation of axiom schemas on a service
specification, if it actually embeds an enactment of the given service according
to the adopted semantics. Using this result, we have a main tool to reason
about dynamic properties of e-services, assumed that they can be encoded in a
compatible manner. Now, we show how to deal with various kind of semantic
properties in following chapters.

Theorem 21. Given an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX) of a consistently defined
simple service, let ω̂ be a structure s.t. ω̂ = µ(ω, ω′, σX, σ

′
Y), then:

ω̂ |= KBU
m

Proof. Let ω̂ be the structure built applying the function µ to the enactment:
since such a function is an extension of the mapping function used in the proof
of Theorem 17, we can use the same argument to prove that ω̂ |= KBP . On the
other hand, the mapping function, assuming Topm = Top′, is also an extension
of the mapping function used in the proof of Theorem 15, so we can conclude
that ω̂ |= K̃B

X,Y
(Topm).

In order to complete the proof we need to show that other axioms also hold.
Regarding definition axioms introduced by in Equations 4.2, 4.3, 4.4, and 4.5,
we point out that the construction adopted is an extension of which used in
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the proof of Theorem 19, so we can adopt the same argument also here. They
need some adjustment in order to keep into account also instantiation variables
(Equations 4.6 and 4.7).

Given an element x ∈ [m(A)∗]ω̂, since the construction we have that:

x ∈ A+(ω, σX, σ
′
Y)

which, according to insert set definition, means that:

• x ∈ A+(ω, σX)

• or exists an effect 〈+, A, Y 〉 ∈ E s.t. x = σ′Y(Y ).

In the first case, we can conclude that x ∈ [m(A)+]ω̂, while in the second that
x ∈ Y ω̂. According to standard semantics, we can state that:

ω̂ |= x : m(A)+ t
⊔

〈+,A,Y 〉∈E

Y

and, hence, that:
ω̂ |= m(A)∗ v m(A)+ t

⊔
〈+,A,Y 〉∈E

Y

On the other hand, given an element x ∈ [m(A)+ t
⊔
〈+,A,Y 〉∈E Y ]ω̂, since

the standard semantics we have that:

• x ∈ [m(A)+]ω̂

• or exists an effect 〈+, A, Y 〉 ∈ E s.t. x ∈ Y ω̂.

In the first case, we can conclude that x ∈ A+(ω, σX), while in the second that
x = σ′Y(Y ). Applying the definition of the insert set and the construction of
the embedding function we can conclude that:

ω̂ |= x : m(A)∗

and, consequently, that:

ω̂ |= m(A)+ t
⊔

〈+,A,Y 〉∈E

Y v m(A)∗

We need, instead, explicitly show that update axioms hold.
We consider concept update axioms, the argumentation, despite the nota-

tion, can be also adapted to the role corresponding ones. Since ω′ is a successor
state of the state ω, according to the definition of the relation we have that:

Aω′ ⊇ A+(ω, σX, σ
′
Y)

Given the definition of the mapping function, we can establish that:

m(A)ω̂ ⊇ [m(A)∗]ω̂

which means that ω̂ |= m(A)∗ v m(A).
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Since the service is consistently defined, for each enactment we have that
insert and delete sets for each concept set are mutually disjoint, given the con-
struction we can conclude that:

ω̂ |= m(A)+ um(A)− v ⊥

Given the definition of the delete set for a concept A, we have that:

Aω ⊇ A−(ω, σX)

so applying the construction according to the definition of the embedding func-
tion we have that:

ω̂ |= m(A)− v A

By contradiction, assuming that there exists an element x s.t. ω̂ |= x :
m(A)u¬m(A)∗, but ω̂ 6|= x : Au¬m(A)−. Such an element does not belong to
the insert set, and, since A−(ω, σX) ⊆ Aω and A−(ω, σX) ∩ Aω′ ⊆ ∅, we have
also that x 6∈ Aω.

In other words, we are assuming that the resulting concept extension contains
at least an element that neither belongs to the initial concept extension and
neither has been inserted according to service effect definition. Intuitively, by
inertia, we expecting that such an element must not exist.

Considering the distance between the initial and final state, we have that:

d(ω, ω′) = k +
∥∥∥AωOAω′

∥∥∥ = k +
∥∥∥Aω′ \Aω

∥∥∥+
∥∥∥Aω \Aω′

∥∥∥
Since Aω′ ⊇ A+(ω, σX, σ

′
Y) and x 6∈ A+(ω, σX, σ

′
Y) we also that:

d(ω, ω′) ≥ k + 1 +
∥∥A+(ω, σX, σ

′
Y) \Aω

∥∥+
∥∥∥Aω \Aω′

∥∥∥
But given ω′ we can build a new structure ω′′ that is equal to ω′ except that
the element x does not belong to Aω′′ . This new structure is a successor of the
state ω, but we can observe also that:

d(ω, ω′′) = k +
∥∥A+(ω, σX, σ

′
Y) \Aω

∥∥+
∥∥∥Aω \Aω′′

∥∥∥
Since Aω′′ = Aω′ \ {x} and x 6∈ Aω we can conclude that Aω \Aω′ = Aω \Aω′′

and so:

d(ω, ω′′) = k +
∥∥A+(ω, σX, σ

′
Y) \Aω

∥∥+
∥∥∥Aω \Aω′

∥∥∥ < d(ω, ω′)

or, in other words, that ω′ is not the nearest successor of the state ω, hence
there is not enactment between them. So we can conclude that:

ω̂ |= m(A) u ¬m(A)∗ v A u ¬m(A)−

By contradiction, assuming that there exists an element x s.t. ω̂ |= x :
A u ¬m(A)−, but ω̂ 6|= x : m(A) u ¬m(A)∗. Such an element does not belong
to the delete set, and, since A∗(ω, σX, σ

′
Y) ⊆ Aω′ and A+(ω, σX, σ

′
Y) ∩Aω ⊆ ∅,

we have also that x 6∈ Aω′ .
Also in this case, we are assuming that the resulting concept extension does

not contain an element that belongs to the initial concept extension and has not
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been deleted according to service effect definition. As in the previous case, by
inertia, we are intuitively expecting that such an element must be included in
the final concept extension.

Considering the distance between the initial and final state, we have that:

d(ω, ω′) = k +
∥∥∥AωOAω′

∥∥∥ = k +
∥∥∥Aω′ \Aω

∥∥∥+
∥∥∥Aω \Aω′

∥∥∥
Since Aω ⊇ A−(ω, σX) and x 6∈ A−(ω, σX) we also that:

d(ω, ω′) ≥ k +
∥∥∥Aω′ \Aω

∥∥∥+ 1 +
∥∥A−(ω, σX) \Aω

∥∥
But given ω′ we can build a new structure ω′′ that is equal to ω′ except that
the element x belongs to Aω′′ . This new structure is a successor of the state ω,
and as in the previous case we can observe also that:

d(ω, ω′′) = k +
∥∥∥Aω′′ \Aω

∥∥∥+
∥∥A−(ω, σX) \Aω

∥∥
Since Aω′′ = Aω′ ∪ {x} and x ∈ Aω we can conclude that Aω′ \Aω = Aω′′ \Aω

and so:

d(ω, ω′′) = k +
∥∥∥Aω′ \Aω

∥∥∥+
∥∥A−(ω, σX) \Aω

∥∥ < d(ω, ω′)

or, in other words, that ω′ is not the nearest successor of the state ω, contradict-
ing with the assumption that there is an enactment between them. Consequently
we have that:

ω̂ |= A u ¬m(A)− v m(A) u ¬m(A)∗

Combining this result with the previous we establish that:

ω̂ |= m(A) u ¬m(A)∗ ≡ A u ¬m(A)−

The same argumentation can be adapted to prove the claim also in the case
of role-related axioms, since definitions, also in terms of model distance, are
completely equivalent.

Theorem 22. Given a model ω̂ of the knowledge base KBU
m, then the quadruple

〈ω, ω′, σX, σ
′
Y〉 = π(ω̂), is an enactment of a simple service S from the state ω to

the state ω′, having σX and σ′Y as, resp., input and instantiation assignments.

Proof. Given the definition of service enactment we need to show that:

1. that the assignment σ′Y is actually a consistently defined instantiation
assignment w.r.t. ω;

2. that there is a transition of the system from ω to ω′ w.r.t the assignment
σX and σ′Y.

Since KBU
m ⊃ KBP ∪ K̃BX,Y

(Topm), applying Theorem 16, we can prove
that the instantiation assignment is well-formed and also that the final state
active domain ∆ω′ is consistently defined, given the constraint that forces its
interpretation to be the same of the extended one defined as ω / 〈σX, σ

′
Y〉.
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Regarding the point 2, we begin the proof observing that, since object names
are always the same, there isn’t any form of alias so they are constantly inter-
preted on the same universe elements in all structures (ω, ω′ and ω̂).

Furthermore, we need to show that the insert set is included in the extension
of name in the successor state structure:

Aω′ ⊇ A+(ω, σX, σ
′
Y)

but it can be easily verified since the model ω̂ satisfies the axiom m(A)∗ v
m(A), and, according to the definition of embedding function, we have that
Aω′ = m(A)ω̂ and A+(ω, σX, σ

′
Y) = [m(A)∗]ω̂.

Given the mapping, in order to prove that:

Aω′ ∩A−(ω, σX) ⊆ ∅

we need to show that:
ω̂ |= m(A) um(A)− v ⊥

Assuming that there exists an element x s.t.:

ω̂ |= x : m(A) um(A)−

for some A ∈ A. Since the axiom m(A)− v A we can conclude that:

ω̂ |= x : m(A) uA

On the other hand, we can conclude also that:

ω̂ 6|= x : A u ¬m(A)−

But, since the axiom m(A) u ¬m(A)∗ ≡ A u ¬m(A)−, we have also that:

ω̂ 6|= x : m(A) u ¬m(A)∗

Since we have assumed that x ∈ [m(A)]ω̂, in order to enforce the constraint we
must conclude that x ∈ [m(A)∗]ω̂. If x ∈ [m(A)∗]ω̂, since the definition of the
concept we can consider two cases:

1. x ∈ Y ω̂ for some Y ∈ Y;

2. x ∈ [m(A)+]ω̂.

The first case can never occur, since x ∈ Aω̂ and knowledge base axioms impose
that:

ω̂ |= A v Top, Y v Top′ u ¬Top

Also in the latter there is a contradiction since we have concluded that:

ω̂ |= x : m(A)− um(A)+

while the interpretation ω̂ is assumed to satisfy the axiomsm(A)+um(A)− v ⊥.
We have concluded that ω′ is a potential successor state of ω given the

assignments. To completely prove the claim we must also prove that is the
nearest structure having such properties, since we have assumed a minimal-
change semantics that enables only system transitions that requires the minimal
amount of updates.
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By contradiction, we assume that ω′ is not the state resulting from the
enactment of the service S in ω given the variable assignments, because there
exists another successor state ω′′ ∈ Ω(σ, σX, σY) s.t. d(ω, ω′′) < d(ω, ω′).

According to the definition of the metric function there must exists at least
a concept name A ∈ A (or at least a role name P ∈ P) s.t. there exists at least
an element x ∈ U (or a pair 〈x, y〉 ∈ U×U) s.t. one of the following cases occurs:

1. x ∈ Aω (〈x, y〉 ∈ Pω) and x ∈ Aω′′ (〈x, y〉 ∈ Pω′′) but x 6∈ Aω′ (〈x, y〉 6∈
Pω′);

2. or x 6∈ Aω (〈x, y〉 6∈ Pω) and x 6∈ Aω′′ (〈x, y〉 6∈ Pω′′) but x ∈ Aω′

(〈x, y〉 ∈ Pω′).

Assuming that the name is not affected by any update (i.e., Aω = Aω′′).
According to our formulation the knowledge base implies that:

KBU
m |= m(A) ≡ A,m(A)+ v ⊥,m(A)− v ⊥,m(A)∗ v ⊥

and, hence, that Aω = Aω′ = Aω′′ .
Otherwise, we assume that the name is affected by some update effect. We

consider the first case: x ∈ Aω and x 6∈ Aω′ . Since the axioms of the knowledge
base we can conclude that:

KBU
m |= A u ¬m(A) v m(A)−

which means that:
ω̂ |= x : m(A)−

and, according to the definition of the embedding relation, that:

x ∈ A−(ω, σX)

Since ω′′ is a successor state of ω we have also that:

Aω′′ ∩A−(ω, σX) ⊆ ∅

contradicting the hypothesis that x ∈ Aω′′ . The other case is analogous. Since
the axioms of the knowledge base we can conclude that:

KBU
m |= m(A) u ¬A v m(A)∗

which means that:
ω̂ |= x : m(A)∗

Applying the definition of the embedding relation, it follows that:

x ∈ A+(ω, σX, σ
′
Y)

Since ω′′ is a successor state of ω we have also that:

Aω′′ ⊇ ∩A∗(ω, σX, σ
′
Y)

contradicting the hypothesis that x 6∈ Aω′′ .

The following corollary generalizes the above result.
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Corollary 4. Let 〈ω′, σ′Y〉 ∈ S(ω, σX) be an enactment of a simple e-service S,
then:

• for each concept name A ∈ A

Aω′ = A+(ω, σX, σ
′
Y) ∪ (Aω \A−(ω, σX))

• for each role name P ∈ P

Pω′ = P+(ω, σX, σ
′
Y) ∪ (Pω \ P−(ω, σX))

We now extend the result of Theorem 14 to service enactment, showing that
the resulting states of a service enactment are isomorphic.

Remark 15. This is a foundational result, since isomorphic structures are
indistinguishable using ALCQI description logic language.

Theorem 23. Let ω be a world state, σX a consistent input variable assignment,
S a simple e-service accessible in ω using σX. If 〈ω′1, σ′1〉 and 〈ω′2, σ′2〉 are two
enactments in S(ω, σX), then they are isomorphic.

Proof. In this proof we use the same function h employed in Theorem 14, where
we have shown that extended interpretation are also isomorphic w.r.t. the
instantiation variable assignment.

Such a function h : ∆ω′1 7→ ∆ω′2 can be defined as:

h(x) ,

{
x x ∈ ∆ω

σ′2(Y ) σ′1(Y ) = x

Since, according to Lemma 14, the interpretation domains of successor states are
the same as extended interpretations that take into account also instantiation
variables (ω / 〈σX, σ

′
Y〉), we can show that h is a total bijective function from

∆ω′1 to ∆ω′2 using the same argumentation, so we need to prove that it is also a
homomorphism.

By contradiction: let x be an element of ∆ω′1 and let A be a concept name
in A, s.t. x ∈ Aω′1 , but x 6∈ Aω′2 . Since Corollary 4, we need to consider the
following cases:

1. the element has been inserted into the concept extension (x ∈ A+(ω, σX, σ
′
1)),

implying two other cases:

(a) the element has been newly created, i.e., exists an instantiation vari-
able Y s.t. σ′1(Y ) = x and x ∈ A+(ω, σX, σ

′
1) \A+(ω, σX);

(b) the element is already in the active domain and it belongs to the
concept insert set (x ∈ A+(ω, σX)).

2. the element was already in the concept extension and it has not been
deleted (x ∈ Aω \A−(ω, σX)).

In case 1a, according to the definition of function h, there exists an element
x′ s.t. σ′2(Y ) = x′ and h(x) = x′, where Y is the name of instantiation variable
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s.t. σ′1(Y ) = x. Since the definition of insert set an insert effect of the form
〈+, A, Y 〉 must exist and we can also conclude that:

x′ ∈ A+(ω, σX, σ
′
2) \A+(ω, σX)

but, by definition of successor state, we have that:

Aω′2 ⊇ A+(ω, σX, σ
′
2)

and, hence, that h(x) = x′ ∈ Aω′2 .
In case 1b, we point out that insert set, excluding instantiation variables, is

the same in both enactments since it only depends upon initial state and input
variable assignment and, since we have that h(x) = x, we can conclude that:

h(x) = x ∈ A+(ω, σX)

Applying Corollary 4, we have that h(x) = x ∈ Aω′2 too.
In the last case we can adopt the same argumentation of the previous one,

since the initial extension of the concept A and the delete set do not depend on
instantiation variables in any way, concluding that h(x) = x ∈ Aω′2 .

Also by contradiction: let x be an element of ∆ω′1 and let A be a concept
name in A, s.t. x 6∈ Aω′1 despite x ∈ Aω′2 . Since Corollary 4, we need to consider
the following cases:

1. the element neither initially belongs to the concept extension neither it
has been inserted (x 6∈ Aω ∪A+(ω, σX, σ

′
1)), implying two other cases:

(a) the element has been newly created, i.e., exists an instantiation vari-
able Y s.t. σ′1(Y ) = x;

(b) the element is already in the active domain and it does belong neither
to the concept insert set and initial concept extension (x 6∈ Aω ∪
A+(ω, σX)).

2. the element was already in the concept extension and it has been deleted
(x ∈ A−(ω, σX)).

In the first case, since x 6∈ A+(ω, σX, σ
′
1) \ A+(ω, σX), according to effect

definition, we have that an effect of the form 〈+, A, Y 〉 cannot exist. On the
other hand, there exists an element x′ s.t. σ′1(Y ) = x′ and h(x) = x′. and,
according to insert set definition, otherwise such a kind of effect must be present
in service specification leading to a contradiction:

x′ 6∈ A+(ω, σX, σ
′
2)

but, since x′ ∈ ∆ω′2 \∆ω, it cannot belong to Aω ∪A+(ω, σX), consequently we
have that h(x) = x′ 6∈ Aω′2 .

In case 1b, analogously to previous proofs, in order to prove that x = h(x) is
a member of the set Aω′2 we need to prove that x ∈ A+(ω, σX, σ

′
2) \A+(ω, σX),

but it is contradicting the hypothesis that assumes x ∈ ∆ω, since:

A+(ω, σX, σ
′
2) \A+(ω, σX) ⊆ ∆ω′2 \∆ω

Consequently we can establish that h(x) = x 6∈ Aω′2 .
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In case 2, since the initial extension of the concept A and the delete set do not
depend on instantiation variables in any way, concluding that h(x) = x 6∈ Aω′2 .

The proof can be extended to role interpretations too, keeping into account
various cases in the definition of role insert and delete sets.

Regarding object namesO ∈ O, we remark that their interpretation is always
preserved by any effect and it is the same in any admissible state. Let o be an
object name interpreted as oω ∈ ∆ω, since the definition of successor state, we
have also that:

oω = oω′1 = oω′2

Since oω ∈ ∆ω, then h(oω) = oω.

The devised definition of consistency for service effects is a necessary but not
sufficient condition in order to ensure the correctness of an e-service acting in
a world subject to a constraint set represented by the specification knowledge
base W. In fact, this is a kind of internal effect consistency, since it simply
assures that the enactment effects are per se not contradictory.

On the other hand, we are also interested in the property of a service that
always acts consistently with the specification of the system, or, in other words,
s. t. the world state resulting from an enactment is always legal.

The service contract is defined presuming that the invocation preconditions
are sufficient in order to achieve the realization of one of declared service effects
by an enactment. In other terms, given a state where the service preconditions
hold, the service invocation must result into a new state where the declared
effects are realized. This assumption is fundamental for the verification of the
consistency of service specifications, since it allows for providing a complete
contract specification, excluding external world altering events.

We remark that the service contract imposes to the service provider that,
whenever the client is conforming to the preconditions. it must not fail: we are
essentially ignoring reliability implementation and communication issues and
we are meaning failure in purely functional terms. Such an approach is, by the
way, the same adopted in design-by-contract frameworks ([Mey88]) and it is also
coherent with many agent-based solutions as shown in Section 2.2.7.

Definition 39 (Legal e-service). An e-service is legal iff it implements only
transitions from a legal state to another legal state.

In order to enforce the service contract, once an e-service has been consis-
tently activated, it must update the system state consistently too. Thus, we
formally combine the previous definitions providing the simplest form of consis-
tency property.

Definition 40 (Valid simple e-service). Let E be the effect of a simple e-service
S. We say that the service is valid w.r.t. a world specification W iff:

• the effect E is consistent;

• for each legal world state ω, for each consistent input assignment σX, s.t.
the service is accessible in ω using it, there exists at least a legal state ω′

in the enactment.
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Example 5. Given the specification W provided in Example 2, consider the
following e-service that allows a customer to buy a new vehicle, or in other
words to become the owner7:

X = {x}
Y = {y}
P = x1 u Citizen

E = {+Vehicle(y),+owner(y, x)}

Despite the service is accessible and its effects are consistently defined, it is
not legal, because it is not valid. In fact, its enactments violate several domain
constraints: a vehicle is also a good and it must be recorded to the town authority.
A valid version of the service effects is the following:

E = {+Vehicle(y),+owner(y, x),+Good(y),+registeredId(y,∃residentIn.x)}

We inductively define a generalized translation function τm, given the name
mapping function m, over the concept expression of the description logic lan-
guage ALCQIO, from the alphabet 〈A,P,O〉 to the new alphabet 〈m(A) ∪
{Topm} ,m(P),O〉, as the follows:

τm(A) , m(A)
τm(C u C ′) , τm(C) u τm(C ′)

τm((≥ n R C)) , (≥ n R τm(C))
τm({o1, . . . , on}) , {o1, . . . , on}

τm(¬C) , Topm u ¬τm(C)

As the translation function τ , the generalized one τm can be applied to each
assertion in the knowledge base KB = 〈T ,A〉, obtaining a new knowledge base
KBm = 〈τm(T ), τm(A)〉 in the mapped name space. Generalizing the results of
Theorems 1 and 2 we can easily achieve the following corollaries.

Corollary 5. Let ω and ω̂ be respectively a world state and an arbitrary in-
terpretation s.t. the world state is embedded into the interpretation (ω  m ω̂)
w.r.t. the name mapping function m, then:

Rω = m(R)ω̂

for any ALCQIO role expression R built over the domain specification alphabet
〈A,P,O〉.

Corollary 6. Let ω and ω̂ be respectively a world state and an arbitrary in-
terpretation s.t. the world state is embedded into the interpretation (ω  m ω̂)
w.r.t. the name mapping function m, then:

Cω = [τm(C)]ω̂

for any ALCQIO concept expression C built over the domain specification al-
phabet 〈A,P,O〉.

7Please consider that this is an abstraction of the real-world process: the service does not
create the “thing” vehicle, but simply makes the system aware of its existence. Moreover, an
e-government system is concerning only about things that have been accordingly recorded.
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Theorem 24. A consistent and accessible simple e-service S is valid w.r.t. a
world specification W iff the following implication holds:

KBU
m ∧ τ(W) |= τm(W)

where m is a name mapping function for the domain.

Proof. We assume that the service is valid: since it is also accessible and consis-
tent we have at least an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX). Let ω̃ = µ(ω, ω′, σX, σ

′
Y)

the embedding structure: according to Theorem 21 it is a model of the knowl-
edge based KBU

m. W.l.o.g., we assume that there exists an axiom τm(C) v
τm(D) ∈ τm(W) s.t.:

ω̃ 6|= τm(C) v τm(D)

Now we consider two cases:

1. if there is no instantiation variable (Y = ∅);

2. otherwise if there is at least an instantiation variable (‖Y‖ > 0).

In the first case, there is exactly one successor state ω′, so applying Lemma
15 and Corollary 6 we can conclude that:

ω′ 6|= C v D

In the second case, since we have assumed that the implication does not
hold, applying the same observations of the previous case we can also conclude
that:

ω′ 6|= C v D

but it is not enough to conclude the proof, since the definition of valid e-service
requires that exists at least a valid instantiation assignment satisfying the con-
straints, not that any assignment has this property. However, according to
Theorem 23, a successor state is isomorphic to any other in the enactment. If
we assume that 〈[ω′]∗, [σ′Y]∗〉 ∈ S(ω, σX) is the pair s.t.:

[ω′]∗ |=W

and, since the interpretations [ω′]∗ and ω′ are isomorphic, they must satisfying
the same DL axioms, so:

ω′ |= C v D

Obtaining the contradiction that concludes the proof.
Now we assume that the implication holds, since the service is consistent

and accessible there exists at least an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX), but, since
we are assuming by contradiction, that the service is not valid, does not exist
any ω′ resulting from the enactment s.t.:

ω′ |=W

W.l.o.g., we assume that there exists an axiom C v D ∈ W s.t.:

ω′ 6|= C v D
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Applying Theorem 21 we obtain a structure ω̃ that is also a model of the knowl-
edge based KBU

m. Since the assumption, it is also a model of τm(W):

ω̃ |= τm(W)

that implies also that:
τm(C)ω̃ ⊆ τm(D)ω̃

According to Lemma 15, we can establish that the final state ω′ is embedded.
w.r.t. the name mapping m into ω̃, so we can apply Corollary 6, obtaining that
τm(C)ω̃ = Cω′ and τm(D)ω̃ = Dω′ , concluding that:

ω′ |= C v D

contradicting the hypothesis that ω′ is not a legal world state.

Theorem 25. Given a world specification W and an accessible and consistent
service S, the problem of checking if S is also valid is in coNEXP.

Proof. As done for other cases previously analyzed, we can solve the problem
applying the property proved in Theorem 24, reducing it to an implication
decision in C2 logics, hence we use the result of Proposition 1. Like other
reductions it is also polynomial in the size of the input (number and length of
axioms, preconditions and effects specifications).

4.3 Updates and Repairs

Differently from other approaches, so far we have assumed that the effect spec-
ification of a service is completely defined: in other words, there is no left space
for any kind of collateral effects. Despite this assumption is closer to traditional
information system design methodologies, it is quite different from applications
of knowledge-based techniques, which generally consider the specification as
incomplete and exploit reasoning features in order to achieve a consistent be-
havior.

There are different examples of such a philosophy in different fields, from the
query-answering over inconsistent databases [CLR03] to the revision of knowl-
edge bases given a new piece of knowledge [EG92]. In the field of update theory,
the notion of repair is old at least as the notion of update itself [Win90, AHV95a],
also in applications based upon expressive Description Logics [DLPR06]. How-
ever, the problem of repairing even a simple update in the presence of a complex
intensional knowledge base (or a complex constraint set, using the DB termi-
nology) turns out to be very hard, since, given the complexity of the axiom
language, non-local repair side-effects may arise. It means that, in order to
enforce consistently an update, we are required to retract a relevant part of the
previous knowledge base. Some authors have addressed the problem limiting
the constraint language to a simpler form (e.g., acyclic or definitorial TBox),
but in the general case the problem is undecidable both in Description Log-
ics ([BLM+05a]) and in relational database schemas ([AV89]). Intuitively, the
search for a repair must be carried out considering necessarily an infinite number
of candidate repairs.

Now, since we have introduced some limitations on the expressive power of
the constraint language, do we need to renounce to the ability of repairing a
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partially-specified update? Generally speaking, since we can reduce, using some
adjustments, our framework to the proposal of [BLM+05a], the problem shows
up as undecidable also in this case, but, if we renounce to the completeness of
the repair search, limiting to a restricted and finite set of possible repairs, the
answer can be positive, since, as we show in the follow, we regain the decidability.

We are not necessarily interested into repairs that impose a complete revision
of the world state, so we can keep into account an incomplete strategy, but how
can we bound the search obtaining a possibly useful result?

The devised approach, that is clearly an approximation of a minimal-change
repair, relies on the syntactical generation of repairing additional effects starting
from singleton values, like variables and constants, mentioned in the service
definition. The intuition behind this is that any repair not only should be
as small as possible in terms of affected elements, but also should act locally,
involving, if possible, only elements “close” to elements affected by the service
itself.

Example 6. Given the following world specification:

W = {Student v Person,Worker v Person}

on the alphabet A = {Person,Student,Worker} and the following service speci-
fication: 〈X = ∅,Y = {y} ,P = ∅, E = {+Student(y)}〉, it is trivial to observe
that the service is not valid, since the insertion of a new element in the extension
of the concept Student violates the first axiom.

In order to enforce this constraint, a simple repair like {+Person(y)} is
enough.

Example 7. The following version of the service S presented in Example 2 is
not valid:

X = {x1, x2}
Y = ∅
P = x1 u Citizen and x2 u Town and not x2 u ∃residentIn−.x1

E =
{
−residentIn(x1,∃residentIn−.x1)

}
because it violates the mandatory participation of concept Citizen in relation
residentIn:

Citizen v ∃=1residentIn.Town

However, the service effect can easily repaired considering an atomic update as:

+residentIn(x1, x2)

Now we present the basic forms of update repair, in order to accordingly
define the repair search space.

Definition 41 (Positive repair argument). A positive repair argument is any
element in XS ∪YS ∪O, where XS and YS are resp. the input and the instan-
tiation variable sets of the service specification, while O is the object name set
of the domain specification.

Definition 42 (Negative repair argument). A positive repair argument is any
element in XS∪O, where XS is the input variable set of the service specification,
while O is the object name set of the domain specification.
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Definition 43 (Atomic concept repair). Let XS be the input variable names of
a service S defined in the domain 〈A,P,O〉, and let YS be the corresponding
output variable names. An atomic concept repair is a triple 〈s,A, a〉 where:

• s ∈ {+,−} is the sign of the repair (insert or delete);

• A ∈ A is the target concept name;

• a is the argument of the repair (positive or negative) according to the sign
s.

Definition 44 (Atomic role repair). Let XS be the input variable names of
a service S defined in the domain 〈A,P,O〉, and let YS be the corresponding
output variable names. An atomic role repair is a quadruple 〈s, P, l, r〉 where:

• s ∈ {+,−} is the sign of the repair (insert or delete);

• P ∈ P is the target role name;

• l and r are the arguments of the repair (positive or negative) according to
the sign s.

Definition 45 (Conflicting atomic repairs). A pair of concept or role atomic
repairs is conflicting iff the forming repairs have the same target concept or role
name and same argument(s) but different sign.

Definition 46 (Simple repair). A simple repair R for an e-service S is an
arbitrary set of atomic concept and role repairs, possibly empty, s.t. it does not
contain any pair of conflicting atomic repairs.

Given an e-service S, the set of all simple repairs is denoted as R∗S .

Definition 47 (Repair search family). A repair family RS for S is an arbitrary
subset of R∗S.

Restricting our attention to simple repairs, we can assume as repair search
space the set R∗S or a specific repair family. It is worth noticing that usually
such a set contains also the null-repair (represented as an empty set), since a
repairable but non-valid service can sometime, but not always, exhibit a legal
behavior.

Theorem 26. Given a domain specification 〈A,P,O〉 and a simple e-service
specification S = 〈XS ,YS ,PS , ES〉, there are at most O

(
2‖A‖·n+‖P‖·n2

)
dis-

tinct simple repairs, where n = ‖O‖+ ‖XS‖+ ‖YS‖.

Proof. Since the concept and role repairs are separately defined any simple
repair R can be split into two components RA and RP , s.t. the first one contains
only concept repairs while the latter only role repairs. In terms of cardinality,
we have that:

‖R∗S‖ =
∥∥RA

S

∥∥ · ∥∥RP
S

∥∥
where RA

S (resp. RP
S ) is the set of the set of atomic concept (resp. role) repairs.

Since not all arbitrary atomic repair sets are allowed they are subset of corre-
sponding power-sets. Generally speaking, we have n+ = ‖O‖ + ‖XS‖ + ‖YS‖
distinct positive arguments and n− = ‖O‖+‖XS‖ distinct negative arguments.
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We observe that n+ ≥ n− and, since we are looking for an upper bound of the
cardinality, we ignore the distinction between positive and negative argument
types. A simple concept repair can be considered as a function that maps any
pair formed by a concept name and an argument to a value picked from the set
{0,+1,−1} according to such a pair is ignored from the repair (0), it is included
as positive repair (+1) or as negative repair (−1). The number of admissible
functions is 3‖A‖·n

+ ≥
∥∥RA

S

∥∥. Using analogous argumentation, we can also
conclude that 3‖P‖·n

+2
≥
∥∥RA

S

∥∥ and then that:

‖R∗S‖ ≤ 3‖A‖·n
+
· 3‖P‖·n

+2

= 3‖A‖·n+‖P‖·n2

where n+ = n.

The number of different repairs, or, in other words, the size of the search
space, is finite and exponentially bounded by the number of alphabet elements
(in terms of names), while they are substantially independent of the complexity
of the world specification axioms and service effect statements.

Moreover, the size of the largest simple repair is polynomially bounded by
the problem setting size.

Theorem 27. Given a domain specification 〈A,P,O〉 and a simple e-service
specification S = 〈XS ,YS ,PS , ES〉, the size of a simple repair is at most
O
(
‖A‖ · n+ ‖P‖ · n2

)
, where n = ‖O‖+ ‖XS‖+ ‖YS‖.

Proof. This result follows from the observation that the largest simple repair can
at most contains, for any possible positive argument and concept (resp. role)
name, a positive atomic repair (the number of positive arguments is greater or
equal than the number of negative ones).

Now, we define the semantics of devised repair primitives.

Definition 48 (Repair concept insert set). Given a simple repair R ∈ R∗S and a
concept name A ∈ A, a world state ω, an input assignment σX, an instantiation
assignment σ′Y, the repair concept insert set is defined as:

A+
R(ω, σX, σ

′
Y) =

⋃
〈+,A,X〉∈R

{σX(X)} ∪
⋃

〈+,A,Y 〉∈R

{σ′Y(Y )} ∪
⋃

〈+,A,O〉∈R

{Oω}

Definition 49 (Repair concept delete set). Given a simple repair R ∈ R∗S and
a concept name A ∈ A, a world state ω, an input assignment σX, the repair
concept delete set is defined as:

A−R(ω, σX, σ
′
Y) =

⋃
〈−,A,X〉∈R

{σX(X)} ∪
⋃

〈−,A,O〉∈R

{Oω}

Definition 50 (Repair role insert set). Given a simple repair R ∈ R∗S and a
role name P ∈ P, a world state ω, an input assignment σX, an instantiation
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assignment σ′Y, the repair role insert set is defined as:

P+
R (ω, σX, σ

′
Y) =

⋃
〈+,P,X,X′〉∈R

{σX(X)} × {σX(X ′)} ∪
⋃

〈+,P,X,Y 〉∈R

{σX(X)} × {σ′Y(Y )}

∪
⋃

〈+,P,X,O〉∈R

{σX(X)} × {Oω} ∪
⋃

〈+,P,Y,X〉∈R

{σ′Y(Y )} × {σX(X)}

∪
⋃

〈+,P,Y,Y ′〉∈R

{σ′Y(Y )} × {σ′Y(Y ′)} ∪
⋃

〈+,P,Y,O〉∈R

{σX(X)} × {Oω}

∪
⋃

〈+,P,O,X〉∈R

{Oω} × {σX(X)} ∪
⋃

〈+,P,O,Y 〉∈R

{Oω} × {σ′Y(Y )}

∪
⋃

〈+,P,O,O′〉∈R

{Oω} × {O′ω}

Definition 51 (Repair role delete set). Given a simple repair R ∈ R∗S and a
role name P ∈ P, a world state ω, an input assignment σX, the repair role
delete set is defined as:

P−
R (ω, σX, σ

′
Y) =

⋃
〈−,P,X,X′〉∈R

{σX(X)} × {σX(X ′)} ∪
⋃

〈−,P,X,O〉∈R

{σX(X)} × {Oω}

∪
⋃

〈−,P,O,X〉∈R

{Oω} × {σX(X)} ∪
⋃

〈−,P,O,O′〉∈R

{Oω} × {O′ω}

Remark 16. The provided semantics is well-founded also in the case some
instantiation variable name Y ∈ Y is not assigned: in such a case it is simply
interpreted as the empty set.

Intuitively, the repair concept (resp. role) insert (resp. delete) set of a name
contains all the elements (resp. element pairs) that are also inserted (resp.
deleted) from the name interpretation in order to obtain a service enactment
that realizes its own effects giving a new legal world state.

Given the definition of repair sets we can easily obtain the following result:

Lemma 18. Given a service S and a repair R ∈ R∗S and a concept name
A ∈ A, let ω, σX, and σ′Y be resp. the initial state, input and instantiation
variable assignment, then the following conditions hold:∥∥A+

R(ω, σX, σ
′
Y)
∥∥ ≤ ‖{r|r = 〈+, A, a〉 ∈ R}‖∥∥A−R(ω, σX)
∥∥ ≤ ‖{r|r = 〈−, A, a〉 ∈ R}‖

Proof. The claim follows from the observation that each atomic repair at most
affect one distinct element (i.e., two different atomic repairs can affect the same
element depending upon the variable assignment), so the number of affected
elements of a concept name is less than the number of atomic repair having such
a name as target. The same argumentation can be applied to role repair.

Lemma 19. Given a service S and a repair R ∈ R∗S and a role name P ∈ P,
let ω, σX, and σ′Y be resp. the initial state, input and instantiation variable
assignment, then the following conditions hold:∥∥P+

R (ω, σX, σ
′
Y)
∥∥ ≤ ‖{r|r = 〈+, P, l, r〉 ∈ R}‖∥∥P−

R (ω, σX)
∥∥ ≤ ‖{r|r = 〈−, P, l, r〉 ∈ R}‖
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Given a service provider with the update repair capability previously defined,
we need to refine the definitions related to system dynamics, in order to keep
into account also the repairing step that, intuitively, follows the instantiation
and updating steps.

Definition 52 (Candidate repaired successor state). Given a world specification
W and an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX) of a service S, let R ∈ R∗S be a simple
repair. The associated candidate repaired successor state ω′R is an interpretation
structure s.t.:

• its interpretation domain is the same as the successor state (∆ω′ = ∆ω′R);

• the interpretation of each concept name A ∈ A is adjusted accordingly the
repair:

Aω′R = (Aω′ \A−R(ω, σX)) ∪A+
R(ω, σX, σ

′
Y)

• the interpretation of each role name P ∈ P is adjusted accordingly the
repair:

Pω′R = (Pω′ \ P−
R (ω, σX)) ∪ P+

R (ω, σX, σ
′
Y)

• the interpretation of each object name O ∈ O is left unchanged (Oω′R =
Oω′).

The provided definition is not complete: in fact, in order to be useful and
safe, a repair R should be s.t.:

• it does not “undo” the effects of the service (e.g., deleting an element just
inserted);

• it actually updates the world state (e.g., it should not insert an element
already present into a set or just inserted by the service enactment).

In other words, since candidate repairs are essentially generated in a syntactical
fashion, we need to enforce that their semantics is consistent, given the world
state and the variable assignments.

Definition 53 (Consistent simple repair). Given a repair R ∈ R∗S for a simple
e-service S, a world state ω, an input and an instantiation variable assignments
σX and σ′Y consistently defined, the repair is consistent iff for each concept name
A ∈ A the following conditions hold:

A+
R(ω, σX, σ

′
Y) ∩ (Aω ∪A+(ω, σX, σ

′
Y)) = ∅

A+
R(ω, σX, σ

′
Y) ∩ (A−R(ω, σX) ∪A−(ω, σX)) = ∅

A−R(ω, σX) ∩ (A+(ω, σX, σ
′
Y) ∪A−(ω, σX)) = ∅

A−R(ω, σX) ⊆ Aω

and for each role name P ∈ P the following conditions hold:

P+
R (ω, σX, σ

′
Y) ∩ (Pω ∪ P+(ω, σX, σ

′
Y)) = ∅

P+
R (ω, σX, σ

′
Y) ∩ (P−

R (ω, σX) ∪ P−(ω, σX)) = ∅
P−

R (ω, σX) ∩ (P+(ω, σX, σ
′
Y) ∪ P−(ω, σX)) = ∅

P−
R (ω, σX) ⊆ Pω
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Definition 54 (Repaired successor state). Given a world specification W and
an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX) of a service S, let R ∈ R∗S be a simple repair.
The associated repaired successor state ω′R is an interpretation structure s.t.:

• the state ω′R is a candidate repair successor state of the enactment applying
R;

• R is consistent given ω, σX and σ′Y;

• ω′R is a legal world state w.r.t. W even if ω′ is not.

We notice that, since also the null repair is allowed (R∅ = ∅), in the case of
consistent e-service each successor state is also a repaired successor state. More-
over, among multiple repaired successor states (assuming that at least one of
them exists), the repairing strategy selects the one nearest to the base successor
state ω′, in terms of symmetric difference between interpretation structures, in
order to enforce a kind of minimal-change repair.

Definition 55 (Repaired transition relation). Let ω and ω′R be a pair of world
states, satisfying the world specification W, s.t. the latter is resulting from the
execution of the effect E of an e-service S in the state defined from the former
applying a repair R ∈ R∗S. Given an input and an output variable assignments
σX and σ′Y consistently defined, there exists a system state transition from ω to
ω′R using the specified e-service effect iff:

• ω′R is a repaired successor state of the enactment 〈ω′, σ′Y〉 ∈ S(ω, σX);

• there does not exist any other repaired successor state ω′R′ of the same
enactment s.t. it is closer to ω′ than ω′R according to the symmetric dif-
ference distance (which means that d(ω′R, ω

′) ≤ d(ω′, ω′′) for each ω′R′ s.t.
R′ ∈ R∗S and R is consistent).

Theorem 28. Given a world specificationW, an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX)
of a service S and a repair R ∈ R∗S, let ω′R be the repaired successor state, then:

d(ω′R, ω
′) ≤ ‖R‖

Proof. Applying the definition of symmetric difference we obtain that:

d(ω′R, ω
′) =

∑
A∈A

∥∥∥Aω′R ]Aω′
∥∥∥+

∑
P∈P

∥∥∥Pω′R ] Pω′
∥∥∥

Let A be a concept name8, its contribution to distance is:

dA =
∥∥∥Aω′R \Aω′

∥∥∥+
∥∥∥Aω′ \Aω′R

∥∥∥
Since the repair is consistent, applying Corollary 4 we can conclude that:

A−R(ω, σX) ⊆ Aω′

A+
R(ω, σX, σ

′
Y) ∩Aω′ = ∅

8For the sake of simplicity we consider only the case of concept contribution to structure
distance, since the same argumentation also holds for the case of role names.
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Using the definition of repaired successor state we can hence infer that:

Aω′R \Aω′ = A+
R(ω, σX, σ

′
Y)

Aω′ \Aω′R = A−R(ω, σX)

Applying the result of Lemma 18, we can establish that:

dA ≤ ‖{r|〈+, A, a〉 ∈ R}‖+ ‖{r|〈−, A, a〉 ∈ R}‖

Summing up we have that:

d(ω′R, ω
′) ≤

∑
A∈A

(‖{r|〈+, A, a〉 ∈ R}‖+ ‖{r|〈−, A, a〉 ∈ R}‖)

+
∑
P∈P

(‖{r|〈+, P, l, r〉 ∈ R}‖+ ‖{r|〈−, P, l, r〉 ∈ R}‖)

= ‖R‖

since the sum is computed over a complete partition of the set R.

Theorem 29. Given a world specificationW, an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX)
of a service S and a repair R s.t. , let ω′R be the repaired successor state,
d(ω′R, ω

′) < ‖R‖, then there exists a repair R′ subset of R, s.t. d(ω′R′ , ω′) =
‖R′‖.

Proof. The size of a repair is strictly greater than the distance among world
states if, given the variable assignment, two or more atomic repair are inter-
preted on the same extension. Removing the redundant atomic repair we ob-
tain a new repair whose size is equal to the distance between interpretation
structure

We notice that such property does not hold for any restricted repair: in fact
the singleton semantics associated to atomic repairs allows us to determine an
upper bound to the impact of the repair itself. Moreover, in case of general
repairs there can be cases in which it is impossible a priori to state the dis-
tance between original and repaired states or the number of possible repaired
alternatives at a given distance as the following example shows.

Example 8. Let ω be a world state of a very simple domain that specifies only
a relation name r. The world specification contains the following constraints:

∃r−.> ≡ ∃r.>
∃=1r−.> v ∃=1r.>

The role r is globally functional and it forms infinite chains on infinite inter-
pretation domains or loop on finite ones. W.l.o.g., assume that ∆ω is finite and
that the interpretation of r is the following:

rω = {〈o1, o2〉, . . . , 〈on−1, on〉, 〈on, o1〉}

where {o1, o2, . . . , on} ⊆ ∆ω.
Given a generic update statement of the form −r(oi, oi+1), that simply breaks

the chain in some point, it is worth noticing that a possible repair that enforces
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the update effects and leads to a legal world state is s.t. the final interpretation
of r is empty (rω′′ = ∅). Hence the distance between the original and repaired
final state is:

d(ω′, ω′′) = n− 1

and it depends only on extensional elements, so it cannot be bounded a priori
in any way. Alternatively, any other repair that split the chain into more pieces
and close them as loop adding a new link for each one. In this case the closest
repair requires at least the removal of a link, splitting the chain into two pieces
and two new links to close them as loops, hence it is at distance 3 from the
updated model, but there is a number of alternatives (n − 1) among them it is
possible to select the link to remove.

Given Theorem 28, we are able to find the semantically minimal-change
repair, considering it syntactical size (in terms of cardinality of atomic repair).
The corresponding search algorithm (see Figure 4.5) explores the repair search
state RS considering at each step only simple repairs of specific size from the
smallest (possibly empty) to largest one.

In order to completely deal with repairs in terms of size of the affected model
we need to introduce a supplementary constraint on the search space, that turns
to be extremely natural and not particularly restrictive.

Definition 56 (Normal repair search family). A repair family RS is a normal
repair family iff:

• it includes the null repair (∅);

• given any non-empty repair R ∈ RS, each subset R′ ⊂ R s.t. ‖R‖ =
‖R′‖+ 1 is also included in RS.

Remark 17. Unless differently stated, we assume as repair search space the
whole R∗S set, but this characterization enables to tune the repair algorithm
according to application requirements.

Lemma 20. A normal repair family contains any arbitrary subset of its ele-
ments.

Proof. Trivial.

Lemma 21. The simple repair search algorithm always returns the minimal-
change repair, provided that the repair search space (family) is normal.

Proof. The algorithm clearly return a suitable repair if it exists. By contra-
diction, we assume that the algorithm returns a repair R having size n, but
there is another repair R′ ∈ RS s.t. d(ω′, ω′′R′) < d(ω′, ω′′R) ≤ n, that should be
preferred. Since the algorithm has selected R instead of R′ its size should be at
least n, but according to Theorem 29, a repair R′′ subset of R′ must exist and
its size must be less than n. But if such a repair exists, it must be included into
RS according to Lemma 20, since it is normal, and consequently it has been
visited by the algorithm before R and R′, given the search strategy.

According to the repair approach, which assumes a repair step following the
service update, we need to refine the embedding relation in order to keep into
account also the intermediate transient state.
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Definition 57 (Simple e-service repaired enactment embedding relation). Given
three world states (ω, ω′, and ω′′), having as interpretation domain a subset of
U and s.t. ∆ω′ = ∆ω′′ , an input assignment σX and an instantiation assign-
ment σ′Y both consistent w.r.t. ω, let m and n be two functions that map each
concept (resp. role) name A (resp. P ) into a new one m(A) or n(A) (resp.
m(P ) or n(P )), and let Top, Topm and Topn be new concept names and let
ω̂ = 〈U, ·ω̂〉 be an interpretation over the alphabet 〈A∪X∪Y∪m(A)∪ n(A)∪
{Top,Topm,Topn} ,P∪m(P)∪n(P),O〉. We say that the tuple is embedded by
the repair into the interpretation ω̂ iff the pair ω, ω′ is embedded into ω̂ and the
following auxiliary conditions hold:

∆ω′′ = Topω̂
n

Nω′′ = n(N)ω̂

for each N ∈ A ∪P.

This is a generalization of the enactment embedding relation that keeps
into account also the repair step from the state ω′ to the state ω′′. From the
definition can be easily obtained the following claims:

Lemma 22. Given a quintuple 〈ω, ω′, ω′′, σX, σ
′
Y〉 and an interpretation ω̂, s.t.

the quintuple is embedded into it, then:

1. the quadruple 〈ω, ω′, σX, σ
′
Y〉 is embedded into ω̂;

2. the repaired world state ω′′ is embedded, according to the mapping n, into
the structure ω̂:

ω′′  n ω̂

As done for simple e-services, we can employ the mapping function to menage
multiple repairs at the same time, since also repairs act in a non-deterministic
fashion. So, given a repair R ∈ R∗S , the default mapping function in the case of
simple e-service is n(x) = xR and Topn = Top′. Moreover, in the case of multiple
effects (e.g., non-deterministic or conditional service), the mapping function is
defined as n(x) = xE,R and Topn = TopE , where E is the effect.

Given a service S, an effect specification E for the same service and a
repair R, we define two new axiom schemas denoted as ∆KBR(m,n) and
∆KBC(m,n), presented in Tables 4.4 and 4.5, where ·+, ·−, ·∗ denotes the names
of new auxiliary concepts ands role introduced for every concept A or role P in
the domain specification.

Given such axiom schema ∆KBU (m,n) , ∆KBR(m,n) ∪ ∆KBC(m,n),
we define a new knowledge base KBU

m,n adding to the knowledge base KBU
m,

defined as shown at page 72, the instantiation of the schemas on the domain
specification alphabet.

Remark 18. In order to complete the encoding of the knowledge base into a
C2 theory we need to cope accordingly with nominals, but they can be replaced
with distinct singleton sets implemented using additional unary predicate Õ and
adding the following axiom:

∃=1x.Õ(x)

for each object name and the following for each distinct pair of object names O
and O′:

¬∃x.Õ(x) ∧ Õ′(x)
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Table 4.4: The axiom schema ∆KBR(m,n)

Topm ≡ Topn (4.16)
n(A) ≡ (m(A) u ¬n(A)−) t n(A)+ (4.17)

n(A)+ ≡
⊔

〈+,A,X〉∈R

X t
⊔

〈+,A,Y 〉∈R

Y t
⊔

〈+,A,O〉∈R

{O} (4.18)

n(A)− ≡
⊔

〈−,A,X〉∈R

X t
⊔

〈−,A,O〉∈R

{O} (4.19)

∀x, y.n(P )(x, y) ↔ (m(P )(x, y) ∧ ¬n(P )−(x, y)) ∨ n(P )+(x, y) (4.20)

∀x, y.n(P )+(x, y) ↔
∨

〈+,P,X,X′〉∈R

X(x) ∧X ′(y) (4.21)

∨ . . .

∀x, y.n(P )−(x, y) ↔
∨

〈−,P,X,X′〉∈R

X(x) ∧X ′(y) (4.22)

∨
∨

〈−,P,X,O〉∈R

X(x) ∧O = y

∨
∨

〈−,P,O,X〉∈R

O = x ∧X(y)

∨
∨

〈−,P,O,O′〉∈R

O = x ∧O′ = y

Table 4.5: The axiom schema ∆KBC(m,n)

n(A)+ u (A tm(A)∗) v ⊥ (4.23)
n(A)+ u (n(A)− tm(A)−) v ⊥ (4.24)
n(A)− u (m(A)+ tm(A)−) v ⊥ (4.25)

n(A)− v A (4.26)
∀x, y.n(P )+(x, y) ∧ (P (x, y) ∨m(P )∗(x, y)) → ⊥ (4.27)

∀x, y.n(P )+(x, y) ∧ (n(P )−(x, y) ∨m(P )−(x, y)) → ⊥ (4.28)
∀x, y.n(P )−(x, y) ∧ (m(P )+(x, y) ∨m(P )−(x, y)) → ⊥ (4.29)

∀x, y.n(P )−(x, y) → P (x, y) (4.30)
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A comparison expression like x = O (using FOL syntax) or {O} (using DL
syntax) can be replaced with the formula Õ(x), while an extensional assertion
o : C is equivalent to ∀x.Õ(x) → C(x). We remark that, given the description
logic language employed to axiomatize the world structural constraints (ALCQI)
and the kind of additional axioms introduced in the dynamic problem encoding,
as done devising the various knowledge base presented, there is not any other
case in which we need to deal with nominals or arbitrary constants. Furthermore,
the provided construction can be extended to freely deal with a finite number of
constants in C2 language as shown by [PH05].

Starting from the previous definition of embedding function µ, provided at
page 74, we extend it in order to deal with repaired enactments too: given a
quintuple 〈ω, ω′, ω′′σX, σ

′
Y〉 we define an embedding function µR that maps such

structures into another interpretation ω̂ s.t.:

• the interpretation domain is the whole universe (∆ω̂ = U);

• the interpretation of concepts, roles and objects in the starting state is
preserved (Nω = N ω̂);

• the interpretation of concepts, roles and objects in the update resulting
state is preserved (Nω′ = m(N)ω̂);

• the interpretation of concepts, roles and objects in the repair resulting
state is preserved (Nω′′ = n(N)ω̂);

• the interpretation of Top is the active domain of ω (Topω̂ = ∆ω);

• the interpretation of Topm and Topn is the active domain of ω′ (Topω̂
m =

Topω̂
n = ∆ω′ = ∆ω′′)9;

• the interpretation of New is U \∆ω;

• the interpretation of variable auxiliary concepts is defined according to
the assignment (σX(X) = X ω̂ and σ′Y(Y ) = Y ω̂);

• the update-defining concepts and roles are interpreted according to the
corresponding concept (resp. role) insert or delete set ([m(N)+]ω̂ =
N+(ω, σX), [m(N)−]ω̂ = N−(ω, σX), [m(N)∗]ω̂ = N+(ω, σX, σ

′
Y));

• the repair related concepts and roles are interpreted according to the corre-
sponding concept (resp. role) insert or delete set ([n(N)−]ω̂ = N−

R (ω, σX),
[n(N)+]ω̂ = N+

R (ω, σX, σ
′
Y));

• the object spy is assigned to an element of Newω̂, if any;

• the role aux is interpreted as
{
spyω̂

}
× Newω̂.

The function πR computes the inverse of µR, it projects out from an interpre-
tation ω̂ a quintuple, representing possibly an enactment between the world
states ω and ω′ repaired into ω′′, given the variable assignments, and is defined
only for structures that are models of the knowledge base KBU

m,n. We remark

9According to the definition we have that ω′ and ω′′ have always the same interpretation
domain, because we are ignoring instantiation-capable repairs.
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that the devised construction is a conservative extension of the one used for the
enactment embedding relation.

Moreover, using analogous argumentation, we can state the following claims
that generalize Lemmas 16 and 17 and related results:

Lemma 23. Given a quintuple 〈ω, ω′, ω′′, σX, σ
′
Y〉, and structure ω̂ s.t. ω̂ =

µR(ω, ω′, ω′′, σX, σ
′
Y), then the quintuple is embedded into ω̂ as repaired enact-

ment.

Lemma 24. Given a model ω̂ of KBU
m,n, let 〈ω, ω′, ω′′, σX, σ

′
Y〉 be a tuple s.t.

〈ω, ω′, ω′′, σX, σ
′
Y〉 = πR(ω̂), then it is embedded into ω̂ as repaired enactment.

Lemma 25. Given a quintuple 〈ω, ω′, ω′′, σX, σ
′
Y〉, and structure ω̂ s.t. ω̂ =

µR(ω, ω′, ω′′, σX, σ
′
Y), then, let ω̄ be the structure s.t. ω̄ = µ(ω, ω′, σX, σ

′
Y), then

it is equal to ω̂ restricted to the common alphabet.

Proof. The claim follows from the observation that the second mapping func-
tion (µR), the one that keeps into account also the repair, is a conservative
generalization of the first one (µ), so the interpretation of shared names is the
same.

Lemma 26. Given a model ω̂ of KBU
m ∧∆KBR(m,n), let 〈ω, ω′, ω′′, σX, σ

′
Y〉

be a tuple s.t. 〈ω, ω′, ω′′, σX, σ
′
Y〉 = πR(ω̂), then 〈ω, ω′, σX, σ

′
Y〉 = π(ω̂).

Proof. The claim follows from the fact that the mentioned mapping functions
agree upon the definition of common structures.

Theorem 30. Given an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX) of a consistently defined
service, and a consistent simple repair R ∈ R∗S and repaired successor state ω′′

of ω′ using R, let ω̂ be a structure s.t. ω̂ = µR(ω, ω′, ω′′, σX, σ
′
Y), then:

ω̂ |= KBU
m,n

Proof. According to Lemma 25 we can apply Theorem 21 to show that the
structure ω̄ is a model of the knowledge base KBU

m. Since the structure ω̂ is an
extension of the structure ω̄ that simply adds new name interpretations, without
altering the interpretation on which the satisfiability result relies, we can also
conclude that:

ω̂ |= KBU
m

so, as in previous proofs, in order to prove the claim, we need only to show that
additional axioms also hold. Given the definition of the embedding function, the
interpretation of concept Topm and Topn is always the same so the constraints
in Eq. 4.16 is satisfied.

In order to completely prove that ω̂ |= KBU
m,n, we need to show that the

remain axioms hold too. These axioms encode the extension affected by the
repair as it is specified by the mean of repair concept/repair insert/delete set.
For the sake of succinctness, we will show the result using the axiom of Eq.
4.18, other ones can be obtained using the same argumentation.

According to the definition of mapping function, we have that:

[n(A)+]ω̂ = A+
R(ω, σX, σ

′
Y)
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On the other hand, according to the definition of repair concept insert set:

[n(A)+]ω̂ =
⋃

〈+,A,X〉∈R

{σX(X)} ∪
⋃

〈+,A,Y 〉∈R

{σ′Y(Y )} ∪
⋃

〈+,A,O〉∈R

{Oω}

Applying the standard DL semantics to the right side of the axioms, we have
also that:  ⊔

〈+,A,X〉∈R

X t
⊔

〈+,A,Y 〉∈R

Y t
⊔

〈+,A,O〉∈R

{O}

ω̂

=

⋃
〈+,A,X〉∈R

X ω̂ ∪
⋃

〈+,A,Y 〉∈R

Y ω̂ ∪
⋃

〈+,A,O〉∈R

{
Oω̂
}

Applying the definition of embedding we obtain that: ⊔
〈+,A,X〉∈R

X t
⊔

〈+,A,Y 〉∈R

Y t
⊔

〈+,A,O〉∈R

{O}

ω̂

=

⋃
〈+,A,X〉∈R

{σX(X)} ∪
⋃

〈+,A,Y 〉∈R

{σ′Y(Y )} ∪
⋃

〈+,A,O〉∈R

{Oω}

Concluding that:

ω̂ |= n(A)+ ≡
⊔

〈+,A,X〉∈R

X t
⊔

〈+,A,Y 〉∈R

Y t
⊔

〈+,A,O〉∈R

{O}

The argumentation can be extended also to other axioms encoded by Equations
4.19, 4.21, and 4.22, completing the proof of the claim.

We prove that Eq. 4.20 holds by contradiction. Assuming that there exists
a pair 〈x∗, y∗〉 s.t.:

ω̂ 6|= n(P )(x∗, y∗)

in the spite that we have that:

ω̂ |= (m(P )(x∗, y∗) ∧ ¬n(P )−(x∗, y∗)) ∨ n(P )+(x∗, y∗)

We have two cases:

1. if 〈x∗, y∗〉 ∈ [n(P )+]ω̂, so, according to the definition of embedding func-
tion, we have that 〈x∗, y∗〉 ∈ P+

R (ω, σX, σ
′
Y); given the definition of re-

paired successor state we can conclude that 〈x∗, y∗〉 ∈ Pω′′ and conse-
quently that 〈x∗, y∗〉 ∈ n(P )ω̂;

2. if 〈x∗, y∗〉 ∈ [m(P )]ω̂ and 〈x∗, y∗〉 6∈ [n(P )−]ω̂; applying the definition
of embedding function we obtain that 〈x∗, y∗〉 ∈ Pω′ and 〈x∗, y∗〉 6∈
P−

R (ω, σX); given the definition of repaired successor state we can conclude
that 〈x∗, y∗〉 ∈ Pω′′ and, applying the definition of mapping function, that
〈x∗, y∗〉 ∈ n(P )ω̂.

Now we assume that there exists a pair 〈x∗, y∗〉 s.t.:

ω̂ 6|= (m(P )(x∗, y∗) ∧ ¬n(P )−(x∗, y∗)) ∨ n(P )+(x∗, y∗)
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despite we have that:
ω̂ |= n(P )(x∗, y∗)

Applying the De Morgan’s laws we have two cases:

1. if 〈x∗, y∗〉 6∈ [n(P )+]ω̂ and 〈x∗, y∗〉 6∈ [m(P )]ω̂, so, according to the defi-
nition of embedding function we have that 〈x∗, y∗〉 6∈ P+

R (ω, σX, σ
′
Y) and

〈x∗, y∗〉 6∈ Pω′ ; given the definition of repaired successor state we can infer
that 〈x∗, y∗〉 6∈ Pω′′ and consequently that 〈x∗, y∗〉 6∈ n(P )ω̂;

2. if 〈x∗, y∗〉 6∈ [n(P )+]ω̂ and 〈x∗, y∗〉 ∈ [n(P )−]ω̂; applying the definition of
embedding function we obtain that 〈x∗, y∗〉 6∈ P+

R (ω, σX, σ
′
Y) and 〈x∗, y∗〉 ∈

P−
R (ω, σX); given the definition of repaired successor state we can conclude

that 〈x∗, y∗〉 6∈ Pω′′ and, applying the definition of mapping function, that
〈x∗, y∗〉 6∈ n(P )ω̂.

The same argumentation can be applied to prove that also other axioms obtained
from the instantiation of other axiom types in the schema ∆KBR(m,n) are
satisfied by the structure ω̂.

W.l.o.g., we consider the axiom represented by Eq. 4.23 and, since the
standard semantics, we can establish that:

[n(A)+ u (A tm(A)∗)]ω̂ = [n(A)+]ω̂ ∩ (Aω̂ ∪ [m(A)∗]ω̂)

So applying the definition of embedding function:

[n(A)+ u (A tm(A)∗)]ω̂ = A+
R(ω, σX, σ

′
Y) ∩ (Aω ∪A+(ω, σX, σ

′
Y))

Since the repair is consistently defined, we can conclude that:

[n(A)+ u (A tm(A)∗)]ω̂ = ∅

or, in other words, that:

ω̂ |= n(A)+ u (A tm(A)∗) v ⊥

In a similar way we can also prove other axioms of ∆KBC(m,n).

Generalizing the above result, we obtain the following useful property.

Corollary 7. Given an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX) of a consistently defined
service, and a simple repair R ∈ R∗S and a candidate repaired successor state
ω′′ of ω′ using R, let ω̂ be a structure s.t. ω̂ = µR(ω, ω′, ω′′, σX, σ

′
Y), then:

ω̂ |= KBU
m ∪∆KBR(m,n)

The previous theorem extends the result of Theorem 21 to keep into account
the repair strategy. Also Theorem 22 can be generalized in the same way.

Theorem 31. Given a model ω̂ of the knowledge base KBU
m,n ∧ τn(W), then

the quintuple 〈ω, ω′, ω′′, σX, σ
′
Y〉 = πR(ω̂) is s.t. ω′′ is a successor state of the

enactment from the state ω to the state ω′, using σX and σ′Y as, resp., input
and instantiation assignment, applying the repair R ∈ R∗S.

Proof. In order to show the claim we need to prove that:
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1. there exists an enactment of the service S from ω to ω′ using σX and σ′Y
as variable assignments;

2. the repair R is consistently defined w.r.t. the provided initial world state
and variable assignments;

3. the state ω′′ is resulting from the application of repair R;

4. the state ω′′ is legal w.r.t. the world specification W.

The first point of the proof directly follows from the application of Lemma
26 and Theorem 22.

Regarding the point 2 we need to prove that constraints imposed in the
definition of consistent repair are satisfied in structures projected out from the
model ω̂ applying the function πR. W.l.o.g. we consider the constraint:

P−
R (ω, σX) ∩ (P+(ω, σX, σ

′
Y) ∪ P−(ω, σX)) = ∅

By contradiction we assume that this constraint is not satisfied, i.e., that there
exists a pair 〈x∗, y∗〉 s.t.:

〈x∗, y∗〉 ∈ P−
R (ω, σX) ∩ P+(ω, σX, σ

′
Y)

But, given the definition of the mapping, from this assumption immediately
follows that:

〈x∗, y∗〉 ∈ [n(P )−]ω̂ ∩ [n(P )+]ω̂

violating the axiom in Eq. 4.29, that is assumed satisfied in ω̂, since it is a
model of the whole knowledge base.

To prove the point 3, we need to show that also constraints imposed in the
definition of repair successor state are satisfied in resulting out from the model
ω̂ applying the function πR. W.l.o.g. we consider the constraint:

Aω′′ = (Aω′ \A−R(ω, σX)) ∪A+
R(ω, σX, σ

′
Y)

By contradiction we assume that this constraint is not satisfied, i.e., that there
exists an element x∗ s.t. x∗ ∈ Aω′′ despite x∗ 6∈ (Aω′\A−R(ω, σX))∪A+

R(ω, σX, σ
′
Y).

But, given the definition of the mapping, from this assumption immediately fol-
lows that:

x∗ ∈ n(A)ω̂

x∗ 6∈ (m(A)ω̂ \ [n(A)−]ω̂) ∪ [n(A)+]ω̂

Applying the standard semantics, we obtain that:

ω̂ |= x∗ : n(A) u ¬((m(A) u ¬n(A)−) t n(A)+)

clashing with axiom in Eq. 4.17, that is assumed satisfied in ω̂.
About the active domain of states ω′ and ω′′, it is preserved since the axiom

in Eq. 4.16 and the definition of the mapping that interprets ∆ω′ and ∆ω′′ on
[Topm]ω̂ = [Topn]ω̂.

Regarding the interpretation of object names, we observe that since they are
always the same, there is no form of alias, they are constantly interpreted on
the same universe elements in all structures (ω, ω′, ω′′, and ω̂).
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In order to complete the prove, we apply Point 2 of Lemma 22. Since ω′′ is
embedded into ω̂ according to the mapping n, using the Corollaries 6 and 5, we
can show that two structures agree upon the renaming on the interpretation of
set on which the evaluation of constraints in the world specification W relies.
Since τn(W) is satisfied in ω̂, then W also holds in ω′′, that turn to be a legal
world state.

The ability to cope with a, even limited, form of service effect repair allows
to extend the class of usable e-services, since it relaxes the constraints about the
validity of service w.r.t. the world specification. In other words, we are able to
provide a new definition of accessible e-service, replacing the definition of valid
e-service with a more sophisticated one, which includes also an effect execution
repair.

Definition 58 (Repairable simple e-service). Let E be the effect of a simple
e-service S, and let R∗S be the set of repairs for the service S. S is repairable
w.r.t. a world specification W iff:

• the effect E is consistent;

• for each legal world state ω, for each consistent input assignment σX, s.t.
the service is accessible in ω using it, there exists at least a state ω′ in the
enactment and a repair R ∈ R∗S s.t. the repaired state ω′R is legal.

Intuitively, we are now considering as applicable a service (even if it is not
valid) if, through the considered repair, there exists a way to realize its effects
in a legal world state.

Remark 19. We remark that, in order to provide the definition of repairable
service, the notion of minimality of the repair does not play any significant role,
but it will turn useful in subsequent considerations.

In order to reason about multiple possible repairs, we need to extend the
definition related to the embedding of enactment into structures to the case of
multiple “concurrent” execution flows. It can be accomplished using different
name mapping functions: in such a way, the specification of different executions
is mapped to different names, thus avoiding any possible conflict among them.

Given a quadruple 〈ω, ω′, σX, σ
′
Y〉, a finite set of repair R = {R1, . . . , Rr}

and a finite set Ω = {ω′′1 , . . . , ω′′r } of world states, we define a new mapping
function µR(ω, ω′,Ω, σX, σ

′
Y) that embeds all arguments into a structure ω̂ s.t.:

• the interpretation domain is the whole universe (∆ω̂ = U);

• the interpretation of New is U \∆ω;

• the object spy is assigned to an element of Newω̂, if any;

• the role aux is interpreted as
{
spyω̂

}
× Newω̂;

• for remaining names, the interpretation function is obtained by the union
of interpretation functions of ω̂i = µRi(ω, ω′, ω′′i , σX, σ

′
Y), s.t. each one is

defined using a different name mapping function ni ∈ Nm, s.t. Topni
=

Topi and ni(x) = xi, while the same name mapping function m is s.t.
Topm = Top′ and m(x) = x′.
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The provided definition is well-founded since the various interpretation functions
agree upon the interpretation of shared names.

Given the definition the following property holds:

Lemma 27. Given and structure ω̂ s.t. ω̂ = µR(ω, ω′,Ω, σX, σ
′
Y), a quintuple

〈ω, ω′, ω′′i , σX, σ
′
Y〉, s.t. ω′′i ∈ Ω, is embedded into ω̂ as repaired enactment.

Theorem 32. A consistent and accessible simple e-service S is repairable w.r.t.
a world specification W using a family of repair RS = {R1, . . . , Rr}, iff the
following implication holds:

KBU
m ∧ τ(W) ∧

r∧
i=1

∆KBR(m,ni) |=
r∨

i=1

τni
(W) ∧∆KBC(m,ni)

where m and ni are the name mapping functions for the domain.

Proof. By contradiction, we assume that the service is repairable but the im-
plication does not hold. It means that exists at least a model ω̂ of KBU

m ∧∧r
i=1 ∆KBR(m,ni) that does not satisfy constraints in τni(W)∧∆KBC(m,ni)

for any i ∈ 1 . . . r.
Applying the projection function πR for all repair Ri ∈ RS we obtain a set

of quintuples of the form:
〈ω, ω′, ω′′i , σX, σ

′
Y〉

By definition they agree on 4 components out of 5, since they are built upon
shared names (e.g., A, m(P), and so on).

Since ω̂ |= KBU
m, the quadruple 〈ω, ω′, σX, σ

′
Y〉 represents a valid service

enactment by Theorem 22, and, since the service is deterministic and repairable,
a repair Ri∗ ∈ RS , s.t. the associated final state ω′′i∗ is legal, must exist. So,
applying Theorem 30, we obtain that the structure ω̂ is also a model of the
knowledge base ∆KBC(m,ni∗).

On the other hand, since the state ω′′i∗ is legal and it is embedded into ω̂, by
Theorem 3, we can conclude that also:

ω̂ |= τni∗ (W)

So we have shown that ω̂ satisfies at least a constraint, and hence the contra-
diction.

Now we assume that the service is not repairable despite the implication
holds. Consequently there must exist at least a world state ω and an input
assignment σX s.t. the resulting state can not be “adjusted” with any available
repair.

Let ω′ and σ′Y represent possible enactment, if the service is not repairable,
for each candidate repair Ri ∈ RS at least one of the following condition must
be satisfied:

• the repair is not consistent with the enactment;

• the repaired state is not legal.

Let ω̂ be the structure obtained by the application of function µR to all
candidate repaired states in Ω = {ω′′1 , . . . , ω′′r } obtained from ω′ using repair in
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RS . Since the service is accessible and we are considering a valid enactment,
according to Theorem 21, the constructed interpretation ω̂ is a model of KBU

m.
Given the definition of repair insert and update set, and also of repaired

extension of role and concept names, applying the Corollary 7, we can also
conclude that constraints of ∆KBR(m,ni) are satisfied for all i ∈ 1 . . . r.

Since the implication holds, there also must exist at least a term of the
implied disjunction that is satisfied on the interpretation ω̂, or, in other words,
that:

ω̂ |= τni∗ (W) ∧∆KBC(m,ni∗)

for some i∗. Now we can apply Theorem 31 obtaining that the state ω′′i∗ is legal,
given the world specification, and it is obtained using a repair Ri∗ that is also
consistent with the enactment.

We point out that the size of the reasoning problem is now exponential in the
size of the problem statement, since an exponential number of possible repairs
must be accordingly encoded. It means that reasoning about even this limited
form of update repair w.r.t. integrity constraints implies at most an exponential
complexity blow-up.

Theorem 33. Given a world specification W and an accessible and consistent
service S, the problem of checking if S is also repairable is in coNEEXP.

Proof. The decision problem can be reduced to an entailment checking, that,
according to Corollary 1, is in coNEXP. Differently from previous cases, we
assume that the problem input size is defined in terms of length of domain,
world and service specifications (e.g., number of names or complexity of con-
straints/preconditions, etc.). So, given Theorem 26, the reduction builds an
implication problem instance whose length is exponential in the input size, due
the necessity of encoding of an exponential number of repair alternatives. In
fact, considering the complementary problem RepService, since we have that:

SATC2 ∈ NEXP =
⋃
k

NTIME
(
2mk

)
where m = O

(
2p(n)

)
, let n be the size of the instance of the problem, we have

also that:

RepService ∈
⋃
k

NTIME

(
22p(n)k

)
⊆
⋃
k

NTIME

(
22nk

)
= NEEXP

and, hence, that RepService ∈ coNEEXP.

Remark 20. The ability to deal with service effect repairs can be also viewed as
a form of allowing partially specified services: a repairable service intentionally
states only its primary effects, while its indirect effects (the ones implied by the
primary effects and the domain constraints) are not specified.

4.4 Conclusions

In this chapter we have presented the basic approach to modeling simple e-
service with a consistent operational semantics acting in a complex domain
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specification according to the open-world assumption and the minimal-change
update.

These kind of e-services, described according to the IOPE paradigm, can be
used to axiomatize typical deterministic OWL-S semantically-annotated web-
services, even if they are only partially specified, given the devised repair ap-
proach.

We have also analyzed the complexity of property verification problems, stat-
ing that foundational correctness properties are always decidable in our frame-
work providing also a concrete implementation approach relying upon reasoning
in a decidable fragment of first-order logic and, hence, currently addressable us-
ing Automated Theorem Proving tools ([BG01, Häh01, DV01, NR01]).

Moreover, the repair strategy devised can be also extended so that we are
able to keep into account other update repairing alternatives (e.g., using also
access functions in the definition of atomic repair). Using these approaches
it is generally more difficult to preserve the minimality of the model change
and some more restrictive hypothesis must be considered, even leveraging on
counting ability of the working logic C2.
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Input: a world specification W, an initial world state ω, a resulting world
state ω′, an input assignment σX, and a finite set of repairs RS

Output: a repair R ∈ RS

s← maxR∈RS
‖R‖ ;

for k ← 0 to s do
Rk ← {R ∈ RS | ‖R‖ = k} ;
foreach R ∈ Rk do

if R is consistently defined w.r.t the transition ω → ω′ then
let ω′′ be obtained from ω′ applying R given σX;
if ω′′ |=W then

return R;
end

end
end
return Exception: the enactment is not repairable ;

end

Figure 4.5: The repair search algorithm
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Enhanced e-services

In this chapter we extend the axiomatization model of e-services devised in
Chapter 4, describing some enhanced types of e-services that allow for the spec-
ification of complex behavior.

We basically distinguish between two kinds of such e-services:

conditional e-services, which explicitly state how they select, among a set of
declared behaviors, the enactment results;

non-deterministic e-services, which declare multiple possible alternative be-
haviors, while keeping the decision protocol hidden.

While the first kind of e-service is more suitable to describe interfaces incapsu-
lating components of conventional EISs, which are implementing some kind of
automated task (e.g., a database procedure), the latter is applicable to model
(as an e-service) a complex business process that can possibly involve multiple
autonomous actors (not necessarily information systems), interacting in order
to select the enactment outcome: this is a typical scenario in e-government or
e-business applications, where an authoritative process is published as e-service.
In fact, either the decision procedure may turn to be too complex to be expressed
using a decidable logic framework, or it can be left intentionally unspecified or
unknown. This is a more restrictive form of black-box encapsulation, since not
only implementation details are hidden, but also the process logic. Moreover,
such a kind of problem has been generally addressed by process modeling frame-
works, i.e., process algebras, using τ -transitions and alternative definitions of
weak bisimulation.

5.1 Conditional e-services

In this section we introduce the definition of e-services that allow for conditional
behavior, extending properties and results devised for the basic case.
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5.1.1 Preliminary definitions

In the following, we introduce the formal definitions of meta-model elements
required to specify a conditional e-service.

Generally speaking, we adapt the approach used to define service precon-
ditions to the case of conditional effects introducing a query-based condition
language. Using such a language, we express the auxiliary preconditions under
which a given behavior is adopted by the service implementation1.

For the sake of clarity, we now present the condition language syntax and
semantics.

Definition 59 (Atomic condition term). Let XS be the input variable names
of a service S defined in the domain 〈A,P,O〉. An atomic condition term, that
is suitable for such a service, is a pair 〈s,Q(X)〉 where:

• s ∈ {+,−} is the sign of the precondition (positive or negative);

• Q(X) is a parameterized query over the domain specification in the vari-
ables X ⊆ XS.

Definition 60 (Simple condition). Let S be a service having the set XS as its
input variable names. A simple condition C is any finite arbitrary set of atomic
condition terms on these input variables.

Definition 61 (Branching condition). Let S be a service having the set XS as
its input variable names. A branching condition B is any finite arbitrary set of
simple conditions on these input variables.

As shown for service preconditions, a simple condition is a conjunction of
positive (resp. negative) atomic condition terms that are satisfied if the query
result is not empty (resp. is empty) given an input variable assignment and a
world sate. A set of simple conditions is interpreted as a disjunction of such
constraints: the branching condition is satisfied if at least an element of the set
is satisfied. In other words, effect branching conditions are also expressed in
disjunctive normal form.

Definition 62 (Branching condition satisfaction). Let B be branching condition
of some complex service specification, let ω be a world state and let σX be an
input assignment. We say that the condition B is satisfied in ω w.r.t. σX iff
there exists at least a condition C ∈ B s.t. for each atomic condition term
〈s,Q(X)〉 ∈ C:

• if s = +, then the evaluation of the query Q in ω using σ is not empty;

• or, if s = −, then the valuation of the query Q in ω using σ is empty.

Remark 21. We point out that also instantiation effects can be conditionally
specified; hence, we can define a service that instantiates a different number of
new objects according to the input and the initial state. Formalizing such an
ability requires some minor modifications in the semantic definition.

1We can consider a conditional e-service as a sort of composition of mutually disjoint ser-
vices w.r.t. their preconditions: such a service is activable when at least one of the composing
simple services is.
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Definition 63 (Instantiation set). Given a service S, let YS be the output
variable set. An instantiation set is any arbitrary, possibly empty, subset of
YS.

The instantiation set denotes the set of newly created objects resulting from
a service enactment.

Definition 64 (Positive effect argument). Let XS be the input variable names
of a service S defined in the domain 〈A,P,O〉, and let YS be the corresponding
output variable names and Y ⊆ YS an instantiation set. A positive effect
argument is any element Y ∈ Y or any parameterized query Q(X) over the
domain specification in the variables X ⊆ XS.

Definition 65 (Conditional effect). Let S be a service. A conditional effect is
a finite rooted labeled binary tree s.t. for each node n:

• if n is a leaf node then it is labeled with a pair v(n) = 〈Yn, En〉, where
Yn is an instantiation set and En is a simple effect specification defined
using only the former as instantiation variables;

• otherwise, it is labeled with a branching condition v(n) = Bn.

Intuitively, the labels corresponding to branching conditions Bn are evalu-
ated starting from the root node of E and using a pre-order visit strategy. If
the current node n is a leaf one, the associated effect specification is kept as the
execution outcome. For a non-leaf node, if the condition specified by the node
label is satisfied, then the right child node r(n) is visited, otherwise the left one
l(n) is visited, until a leaf node is reached.

Definition 66 (Selected simple effect). Let E be a conditional effect specifi-
cation, let ω be a world state and σX an input assignment for some service
to which E belongs. The selected effect 〈Ynm , Enm〉 is the label of a leaf node
nm of the tree E s.t. there exists a path 〈n1, . . . , nm〉 from the tree root node
n1 = root(E) s.t., for each non-leaf node ni, if Bni

= v(ni) holds in ω w.r.t.
the given assignment σX, then ni+1 is the right child of ni, otherwise it is the
left one (ni+1 = l(ni)).

Remark 22. Since the employ the term effect both for denoting complex con-
ditional tree structure and simple effect, for the sake of clarity, we use the term
tree effect to denote the whole tree structure and the term leaf effect to denote
the effect specified by a leaf node of the tree.

The branching language has a tree-based structure that enforces that given
a world state ω and an input variable assignment σX exactly one effect is se-
lected or, in other words, conditional e-services are always unambiguous and
completely defined.

In a binary tree is always possible to identity a node, in this case a leaf
node, using a rooted path specified in terms of left or right descendant. In other
words, given an effect 〈Ynm , Enm〉 as label of the leaf nm, the path 〈n1, . . . , nm〉
can be expressed as a string p of length m − 1 over the alphabet {R,L} s.t.
pi = R iff ni+1 is the right child of ni, otherwise it is the left one (ni+1 = l(ni)
and pi = L). Let E be a tree and n a node of the tree, the function path(n)
returns the rooted path in E to n and the function path(n, i) returns the i-th
node of the path (path(n, 1) = root(E)).
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Given a conditional effect specification E, let n ∈ leaves(E) be a leaf effect
specification and let p = path(n) be the corresponding path, we define the
formula φn as:

φn ,
∧

i∈1...‖p‖

{
δ(v(path(p, i)) if pi = R

¬δ(v(path(p, i)) otherwise

where δ is a function defined over the condition language as the follows:

δ(B) ,
∨

C∈B

∧
s∈C

γ(s)

being γ the function defined in Eq. 4.1. We also refer to such a formula as
branching path of a leaf effect.

Remark 23. We notice that as for service preconditions we have introduced
a notational variation of classical description logics knowledge base, since we
allows for arbitrary boolean combination of axioms either intensional or exten-
sional.

Theorem 34. Given a conditional effect specification E, a world state ω and
an input assignment σX, then there exists one and only one selected leaf effect
e among the leaves of the effect tree.

Proof. To prove the claim we need to show that:

1. given a world state and an input variable assignment at least a leaf in the
tree is selected;

2. if more that a leaf are selected they are the same element.

Regarding the first point, we consider the visiting strategy of the tree. In a
top-down way, starting form the root element, we always evaluate the branching
condition given the interpretation structure and the assignment: such an evalu-
ation is a model checking problem that can be always solved given the employed
languages. Hence at each step we can always select the next element to analyze
through the visit according to the evaluation result, the visit algorithm at most
requires a number of step linear in the depth of the branching tree, halting on
every input on a leaf node, that is the selected one.

Moreover, if the assume, by contradiction that, given a world state and an
input assignment, there exist two o more selected elements, we observe that each
one has its own evaluation path from the tree root. W.l.o.g., we assume that
both n′ and n′′ are selected nodes on the same input. Let p′ and p′′ be their
paths: since the tree is rooted, they must have a common prefix p that identify
a node n in the tree s.t., while p′ contains the right child of n, p′′ contains the
left one. But given the definition of visiting algorithm, we are requiring for a
branching condition B = v(n) s.t. it can be evaluated both true and false on
the same interpretation.

We can finally provide the complete definition of conditional e-service as
follows:

Definition 67 (Conditional e-service). Given a domain specification 〈A,P,O〉,
a conditional e-service specification S is a quadruple formed by:
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• a (possibly empty) finite set of input variable names XS;

• a (possibly empty) finite set of output or instantiation variable names YS;

• a (possibly empty) finite set of invocation precondition constraint PS

• a conditional effect specification ES.

Remark 24. A simple e-service is a conditional e-service having as conditional
effect a tree containing only a leaf node.

5.1.2 Formal properties

In this section, we present the analysis of formal properties of conditional e-
services, both extending the argumentation about general features presented in
the previous chapter both discussing on peculiar aspects of this kind of services.

In order to keep into account the conditional behavior of an e-service, while
we can employ the same embedding functions µ and π employed in former cases,
we need to accordingly enrich the specification of the update axioms.

Despite the devised language allows for covering any possible initial/input
configuration, we need to keep into account invocation precondition of the e-
service P. In fact, some branches could be turn as redundant since they can
never be selected because they clash with some pre-condition.

Definition 68 (Non-redundant simple effect). Given a conditional effect E of
an e-service having precondition P and a world specification W, a simple effect
e specified as a leaf of the branching tree E is non-redundant iff there exists
at least a legal world state ω and an input assignment σX s.t. the service is
accessible and the given effect is selected.

Given an e-service having preconditions P, let e = 〈Y, E〉 be a leaf condi-
tional effect of the service attached to the node n, we define a new knowledge
base KBe adding to the knowledge base KBP , built using Y as instantiation
variable set, the formula φn.

Theorem 35. Given a state ω and an assignment σ, an effect e of a service
accessible from ω using σ is selected iff there exists an interpretation ωS s.t.
〈ω, σ〉 = πV(ωS) and ωS |= KBe

Proof. Given a selected effect e of an accessible service S in ω using σ, we use
the embedding function µX to build a new interpretation structure ωS . Since
Theorem 17, the structure is a model of KBP , so, in order to complete the
prove, we need also to show that the formula φn also holds in ωS .

Supposing that this is the case, or, in other words, that there exists a branch-
ing condition B = v(n′), where n′ = path(n, i) for some i ∈ 1 . . . ‖path(n)‖,
s.t. ωS 6|= δ(B) despite the fact that path(n)i = R or ωS 6|= ¬δ(B) having
path(n)i = L. Considering the case path(n)i = R (the other is analogous),
since the effect is selected and the branching condition is marked on a right
descending path of such an effect, it must be evaluated at true in ω given σ,
or in other words, given the definition of condition evaluation, that there exists
a condition C ∈ B s.t. for each atomic condition c ∈ C, if the condition is
positive:

ω / σ |= α : Qc
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where Qc denotes the associated query, or, if the condition has the negative
sign:

ω / σ |= Qc v ⊥

So, applying Theorems 2 and 10 we can also conclude that that there exists
a condition C ∈ B s.t. for each atomic condition c ∈ C, if the condition is
positive:

ωS |= α : τ(Qc)

or, if the condition has the negative sign:

ωS |= τ(Qc) v ⊥

Given the definition of the function δ, we have that ωS |= δ(B), contradicting
the hypothesis that the formula φn is not satisfied.

Considering the converse case, we assume that there exists a model ωS of
the knowledge base KBe: according to Theorem 17 its projection through the
function πX is a state from with the service is accessible using the associated
assignment. To complete the proof, we need also to show that the selected effect
e is the same associated with the node n s.t. φn ∈ KBe.

The effect is completely identified by its rooted path, hence, if the selected
effect e in 〈ω, σ〉 = πX(ωS) is different from n, there must exists a node n′ s.t.
it is in the common prefix of both paths n′ = path(n, i) = path(ne, i) and while,
for example, path(n)i = L, we have that path(ne)i = R.

According to the definition of the formula φn, we have that the structure ωS

is s.t.:
ωS 6|= δ(B)

where B = v(n′) is the branching condition attached to the node. In other
words, according to the standard first-order semantics, we have that for each
condition C ∈ B there exists at least a positive condition c ∈ C s.t. ωS 6|=
α : τ(Qc) or a negative condition c′ ∈ C s.t. ωS 6|= τ(Qc′) v ⊥. Applying
Theorem 11 and 2 we obtain that for each condition C ∈ B there exists at least
a positive condition c ∈ C or a negative condition c′ ∈ C s.t. resp. Qω

c (σ) = ∅
and Qω

c′(σ) 6= ∅.
According to the definition of branching condition evaluation we have that

the condition B does not hold in ω given the assignment σ, so the selected effect,
also according to its definition, must include the left child of the node n′, or, in
other words, that path(ne)i = L, contradicting the initial hypothesis.

From the previous result, given the definition of non-redundant branch, is
easy to conclude the following claim too.

Corollary 8. Given a conditional effect E of a service having preconditions P
and a world specification W, an effect e ∈ leaves(E) is non-redundant iff the
knowledge base KBe ∪ τ(W) is satisfiable.

We can also generalize the claims obtaining the following useful result.

Corollary 9. Given a conditional effect specification E and an arbitrary world
state ω and a suitable input variable assignment σX, let ω̃ be a structure embed-
ding them, then there exists exactly one leaf effect n ∈ leaves(E) s.t. ω̃ |= φn.
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Definition 69 (Well-defined conditional effect). A conditional effect E of a
service is well-defined w.r.t. a world specification W and service preconditions,
if all its branches are non-redundant.

Theorem 36. Given a world specification W and a conditional effect E of a
service, the problem of checking if E is well-defined is in NEXP.

Proof. The result follows from the observation that checking if a single leaf-
effect is non-redundant can be solved as satisfiability problem in C2 in non-
deterministic exponential time. Moreover, a problem instance has a number of
leaf-effects that is at most linear in the size of the input, so it can be solved also
in NEXP.

The definition of successor relation can be generalized in order to keep into
account also conditionally defined services.

Definition 70 (Conditional e-service successor relation). Given a pair of world
states ω and ω′, ω′ is a (potential) successor state of ω, resulting from the
execution of a conditional service S, given an input and an output variable
assignments σX and σ′Y consistently defined w.r.t. ω, iff:

• let 〈Yn, En〉 be the selected effect given the state ω and the input assign-
ment σX;

• the output assignment is defined over Yn or, in other words, that dom(σ′Y) =
Yn;

• ω′ is a successor of ω w.r.t. En and Yn, given the variable assignments.

In the case of conditional e-service, the definition of transition relation does
not require any adjustment, except that it now relies upon the latter version of
successor relation definition.

Now we need to extend to conditional case also the various properties de-
vised for simple e-service and associated checking problems (consistency, valid-
ity, etc.).

Definition 71 (Consistent conditional effect). A conditional service effect E is
consistently defined w.r.t. a world specification W and a service precondition P
iff for each legal world state ω and for each consistent assignment, there is no
element or element pair that belongs both to insert set and delete set of some
concept or role.

We extend the definition of update axioms schema ∆KBE so that we can
keep into account branching conditions as shown in Table 5.1, so the new knowl-
edge base KBE

c is defined adding to KBP the instantiation of this schema.

Theorem 37. Given a conditional service, let E be its effect specification, and
a world specification W, the service is consistently defined iff for each concept
name A ∈ A we have that:

KBE
c ∧ τ(W) |= A+

E uA
−
E v ⊥

and for each role name P ∈ P:

KBE
c ∧ τ(W) |= ¬∃x, y.P+

E (x, y) ∧ P−
E (x, y)
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Table 5.1: The axiom schema ∆KBE
c .

Where 〈Yn, En〉 = v(n) is the leaf effect specification in the tree
E associated to the node n and φn is the corresponding branching
path formula.

∧
n∈leaves(E)

φn → ∀x.A+
E(x)↔

 ∨
〈+,A,Q(X))〉∈En

τ(Q)(x)

 ∧ ¬A(x)

 (5.1)

∧
n∈leaves(E)

φn → ∀x.A−E(x)↔

 ∨
〈−,A,Q(X)〉∈En

τ(Q)(x)

 ∧A(x)

 (5.2)

∧
n∈leaves(E)

φn → ∀x, y.P+
E (x, y)↔ ¬P (x, y) (5.3)

∧

 ∨
〈+,P,Q(X),Q′(X)〉∈En

τ(Q)(x) ∧ τ(Q′)(y)


∧

n∈leaves(E)

φn → ∀x, y.P−
E (x, y)↔ P (x, y) (5.4)

∧

 ∨
〈−,P,Q(X),Q′(X)〉∈En

τ(Q)(x) ∧ τ(Q′)(y)


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Proof. This claim is a generalization of Theorem 19: the proof relies on the
fact, stated in Corollary 9, that in any enactment state (identified by the initial
state and the input assignment) exactly one effect is selected, or, in other words,
that one and only one phin formula is evaluated at true, while others are not
satisfied.

As in the previous case we are assuming the service is accessible, otherwise
the claim is easily proved, and that the effect is consistently defined, but, by
contradiction, that the implication does not hold. In other words, w.l.o.g., we
assume that there exists at least a model ω̂ |= KBE

c ∧ τ(W) s.t. there is an
element x ∈ ∆ω̂ s.t. for some concept A we have that:

ω̂ |= x : A+
E uA

−
E

Given the structure of involved axioms, the other case can be easily obtained
applying the same argumentation.

Given Theorem 11, applying the projection function πX, we obtain a model
ω and an input variable assignment σ s.t. their extended interpretation is em-
bedded into ω̂. Since ω̂ |= x : A+

E , given the definition axiom of the concept A+
E

we have that at least a formula φn∗ must be evaluated at true, given Corollary 9,
and that there exists at least an atomic effect 〈+, A,Q〉, among them specified
in v(n∗), s.t. ω̂ |= x : τ(Q). Analogously we can prove that also another effect
〈−, A,Q′〉 s.t. ω̂ |= x : τ(Q′) must exist in v(n∗). But, applying Theorem 2, we
obtain also that:

ω / σ |= x : Q, x : Q′

in other words, that x ∈ Qω(σ) and x ∈ Q′ω(σ). According to definition of
insert and delete set (ignoring possibly instantiated objects), we can conclude
that:

x ∈ A+(ω, σ) ∩A−(ω, σ)

which means that exists a pair ω, σ, consistent w.r.t. world specification and
service invocation preconditions that violates the service consistency assump-
tion.

Now we assume that the implication holds, but, by contradiction, that the
service effect is not consistently defined. W.l.o.g. we assume that there exists at
least a pair ω, σ s.t. they are consistent with world specification W and service
invocation precondition PS but that there exists a pair 〈x, y〉 s.t.:

〈x, y〉 ∈ P+(ω, σ) ∩ P−(ω, σ)

Following the proof of Theorem 19, we built applying the mapping function
µX a new structure ω′ that is a model for the axioms of the knowledge base
KBP enriched with the interpretation of new concept and role names, defined
accordingly w.r.t. the conditional service semantics. For example:[

A+
E

]ω̂
= A+

e (ω, σ)

where e is the update specification of the selected effect of E in ω given the
assignment σ. The obtained structure ω̂ is yet a model of KBP and to complete
the proof we need to show that also axioms from ∆KBE

c hold.
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For example, we consider the axiom defined by Eq. 5.1 written as the fol-
lows2:

∀x.A+
E(x)↔

 ∧
n∈leaves(E)

φn →
∨

〈+,A,Q(X))〉∈En

τ(Q)(x)

 ∧ ¬A(x)

If the structure ω̂ is not a model, the formula must be not satisfied by such an
interpretation. In other words, we must consider two cases:

1. there exists an element x∗ s.t. ω̂ |= A+
E(x∗) but:

ω̂ 6|=

 ∧
n∈leaves(E)

φn →
∨

〈+,A,Q(X))〉∈En

τ(Q)(x∗)

 ∧ ¬A(x∗)

2. there exists an element x∗ s.t. ω̂ 6|= A+
E(x∗) but:

ω̂ |=

 ∧
n∈leaves(E)

φn →
∨

〈+,A,Q(X))〉∈En

τ(Q)(x∗)

 ∧ ¬A(x∗)

Considering the first case, given the definition of the structure, since x∗ ∈
[A+

E ]ω̂, there must exists a leaf n∗ of the effect tree E s.t., let 〈Yn∗ , En∗〉 = v(n∗)
be the associated label, x∗ ∈ A+

En
(ω, σ) and ω̂ |= φn∗ .

Given the definition of insert set we can also conclude that x∗ 6∈ Aω̂, so we
have that:

ω̂ 6|=
∧

n∈leaves(E)

φn →
∨

〈+,A,Q(X))〉∈En

τ(Q)(x∗)

In other words, we need that for at least a leaf n of the effect tree, the implication
is not satisfied. Such an effect node n′ must be s.t. x∗ 6∈ A+

En′
(ω, σ) and ω̂ |= φn′ ,

where 〈Yn′ , En′〉 = v(n′) is the associated label. But, accordingly to Corollary
9, exactly one an effect is selected at time, so n∗ = n′, hence a contradiction.
Consequently we conclude that:

∀x.A+
E(x)→

 ∧
n∈leaves(E)

φn →
∨

〈+,A,Q(X))〉∈En

τ(Q)(x)

 ∧ ¬A(x)

Now, we consider the converse case. Since the hypothesis, we have that:

• x∗ 6∈ Aω, since x∗ 6∈ Aω̂;

• there exists a leaf node n∗ s.t. ω̂ |= φn∗ and an element 〈+, A,Q(X))〉 ∈
En∗ s.t. x∗ ∈ [τ(Q)]ω̂.

We can apply Theorem 35, concluding that, since KBE
c ∪ φn∗ ⊃ KBe for the

same effect node, the effect associated with the leaf n∗ is actually selected. So,
applying the definition of insert set, we can also conclude that:

x∗ ∈ A+
e (ω, σ)

2Please notice that formulas φn do not contains any free variable, so they can easily pulled
out the scope of the quantifier.
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and, according to the employed construction algorithm of the structure ω̂, also
that:

x∗ ∈
[
A+

E

]ω̂
contradicting the hypothesis that ω̂ 6|= A+

E(x∗). Adopting the same approach we
can conclude that also other kinds of axioms deriving from the schema ∆KBE

c

are satisfied in the interpretation ω̂.
Since the hypothesis, the built model is s.t., for each concept name A ∈ A

we have that:
ω̂ |= A+

E uA
−
E v ⊥

and for each role name P ∈ P:

ω̂ |= ¬∃x, y.P+
E (x, y) ∧ P−

E (x, y)

But, as contradiction hypothesis, we have assumed that exists at least an ele-
ment x ∈ A+(ω, σ) ∩ A−(ω, σ) for some A, but given the construction we have
also that:

x ∈ [A+
E ]ω̂ ∩ [A−E ]ω̂

which means that:
ω̂ 6|= A+

E uA
−
E v ⊥

contradicting the initial hypothesis.

As done for provided definitions of activable service and consistent service
effect, also other properties can be adapted to conditional e-services with minor
adjustment to keep into account the notion of selected effect.

Definition 72 (Conditional e-service enactment). Let ω be a world state and
σX a consistent input variable assignment. Given a conditional e-service S, the
set of possible enactments of S in ω w.r.t. σX contains all the pairs 〈ω′, σ′Y〉
s.t.:

• σ′Y is a consistent instantiation assignment of the selected effect in ES

w.r.t. ω and σX;

• ω and ω′ are in transition relation w.r.t. the assignment and the selected
service effect.

The validity definition for conditional e-service is quite similar to one pro-
vided for simple e-services, relying on the corresponding enactment definition.
However, the axiom schema employed to solve the checking problem need a more
careful modification, in order to keep into account the conditional behavior as
reported in Tables 5.2 and 5.3 that show the new axiom schemas.

We need to extend results obtained in previous sections. As previously
done, we denote as K̃B

X,Y

c the knowledge base resulting from the instantiation
of schema K̃B ∧∆KBX ∧∆KBI

c (Top′).

Theorem 38. Given a world state ω having room for at least ‖Yn‖ new ele-
ments, and a consistent variable assignment σX, s.t. the effect n is selected, then
for any consistent instantiation assignment σ′Y restricted to Yn, s.t. cod(σ′Y)∩
∆ω ⊆ ∅ and X ∩Yn ⊆ ∅, the interpretation µX,Yn(ω, σX, σ

′
Y) is a model of the

knowledge K̃B
X,Y

c .
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Table 5.2: The axiom schema ∆KBI
c (Top′).

Where 〈Yn, En〉 = v(n) is the leaf effect specification in the tree E
associated to the node n, φn is the corresponding branching path
formula and Y =

⋃
n∈leaves(E) Yn.

∧
n∈leaves(E)

φn → ∀x.Top′(x)↔

(
Top(x) ∨

∨
Y ∈Yn

Y (x)

)
(5.5)

∧
Y ∈Y

Y v Top′ u ¬Top (5.6)∧
n∈leaves(E)

φn →
∧

Y ∈Yn

∃=1x.Y (x) ∧
∧

Y ∈Y\Yn

∃=0x.Y (x) (5.7)

∧
Y ∈Y,Y ′∈Y,Y 6=Y ′

Y u Y ′ v ⊥ (5.8)

Proof. This is an extension of Theorem 15, so the proof is based on similar
argumentation, only extended to keep into account the branching formulas.

As in the previous case, we have that the instantiation assignment exists and
that the structure obtained applying the mapping function is of course a model
of the axioms in K̃B.

Now, we need to consider the axioms obtained instantiating axiom schemas
∆KBX and ∆KBX,Y(Top′). Considering the former, we observe that, since
the assignment σ is consistent, each variable X ∈ X is mapped to an element
of ∆ω, but since Topω̃ = ∆ω, where ω̃ = µX,Y(ω, σX, σ

′
Y), we have that:

ω̃ |= X v Top

Furthermore, since each variable is assigned to only one element, given the
definition of the mapping function:

ω̃ |= ](X) = 1

hence, we can conclude that ω̃ |= ∆KBX. Applying the definition of map-
ping function and consistent variable assignment, we can also conclude that the
following equation holds:

Top′
ω̃ = Topω̃ ∪

⋃
Y ∈Yn∗

Y ω̃

where n∗ is the node of the selected effect. According to Corollary 9 exactly
only one there exists, hence:

ω̃ |= φn∗

and for each n 6= n∗:
ω̃ 6|= φn

So, considering the axiom in Eq. 5.1, we have that for the node n∗ the implica-
tion holds since both the antecedent and the consequent are true in ω̃, while for
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Table 5.3: The axiom schema ∆KBU
c (m).

Where 〈Yn, En〉 = v(n) is the leaf effect specification in the tree
E associated to the node n and φn is the corresponding branching
path formula.

∧
n∈leaves(E)

φn → ∀x.m(A)+(x)↔

 ∨
〈+,A,Q(X)〉∈En

τ(Q)(x)

 ∧ ¬A(x)


(5.9)∧

n∈leaves(E)

φn → ∀x.m(A)−(x)↔

 ∨
〈−,A,Q(X)〉∈En

τ(Q)(x)

 ∧A(x)


(5.10)∧

n∈leaves(E)

φn → ∀x, y.m(P )+(x, y)↔ ¬P (x, y) (5.11)

∧

 ∨
〈+,P,Q(X),Q′(X)〉∈En

(τ(Q)(x) ∧ τ(Q′)(y))


∧

n∈leaves(E)

φn → ∀x, y.m(P )−(x, y)↔ P (x, y) (5.12)

∧

 ∨
〈−,P,Q(X),Q′(X)〉∈En

(τ(Q)(x) ∧ τ(Q′)(y))


∧

n∈leaves(E)

φn → ∀x.m(A)∗(x)↔

m(A)+(x) ∨
∨

〈+,A,Y 〉∈En

Y (x)

 (5.13)

∧
n∈leaves(E)

φn → ∀x, y.m(P )∗(x, y)↔ m(P )+(x, y) (5.14)

∨
∨

〈+,P,Y,Y ′〉∈En

(Y (x) ∧ Y ′(y))

∨
∨

〈+,P,Y,Q(X)〉∈En

(Y (x) ∧ τ(Q)(y))

∨
∨

〈+,P,Q(X),Y 〉∈En

(τ(Q)(x) ∧ Y (y))

m(A)∗ v m(A) (5.15)

m(A)+ um(A)− v ⊥ (5.16)

m(A)− v A (5.17)

m(A) u ¬m(A)∗ ≡ A u ¬m(A)− (5.18)
∀x, y.m(P )∗(x, y)→ m(P )(x, y) (5.19)

∀x, y.⊥ ← m(P )+(x, y) ∧m(P )−(x, y) (5.20)

∀x, y.m(P )−(x, y)→ P (x, y) (5.21)

∀x, y.m(P ) ∧ ¬m(P )∗(x, y)↔ P (x, y) ∧ ¬m(P )−(x, y) (5.22)119
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other ones the antecedent is false. Hence, given the standard semantics of impli-
cation, the axiom is satisfied by the provided structure, since each implication
in the conjunction over the tree leaves holds.

Moreover, since also the instantiation assignment is valid, each variable Y ∈
Yn is assigned to a distinct element, so we have that:

ω̃ |= ](Y ) = 1

while other variable names are unassigned we have also that:

ω̃ |= ](Y ) = 0

for each Y ∈ Y \Yn. Then, applying the same argumentation of the axiom in
Eq. 5.1, we can use this property to prove that axiom in Eq. 5.7 is satisfied
in ω̃. In a similar way, we can also prove that axiom in Eq. 5.5 holds on the
given interpretation structure. Given the injectivity property of the assignment
we have also that:

ω̃ |= Y u Y ′ v ⊥
for each pair Y ∈ Y, Y ′ ∈ Y s.t. Y 6= Y ′.

Theorem 39. Let ω̃ be a model of the knowledge base K̃B
X,Y

c , s.t. ω̃ |= φn for
some n ∈ leaves(E), where E is the effect tree of some conditional service, and
let 〈ω, σX, σ

′
Y〉 be a triple s.t. ω̃ = µX,Y(ω, σX, σ

′
Y), then:

ω  ω̃

on the concept alphabet A, and:

ω / σX  ω̃

on the concept alphabet A ∪X, and:

ω / 〈σX, σ
′
Y〉 ω̃

where the domain of instantiation assignment σ′Y is restricted to Yn.

Proof. The claim is obtained applying Theorem 16, considering only variable
names in the instantiation set of the selected effect, since embedding function
is the same.

Stated these preliminary results we need to complete the formalization of the
update analysis in the conditional case, so, as done at page 72, we define, given
a conditional service S and the corresponding tree effect specification E, a new
knowledge base cKBU

m adding to the knowledge base KBP the axioms obtained
instantiating the schemas ∆KBI

c (Topm) and ∆KBU
c (m) for each concept A ∈

A, role name P ∈ P and instantiation variable in Y ∈ Y.
While the embedding µ-function provided at page 74 is left untouched3, the

definition of the projection π-function must be accommodated, since the domain
space is restricted to only interpretation structures that are model of the new
axiom schemas: let πc be such a function projecting out from an embedded
structure, that is a model of the knowledge base cKBU

m, a quadruple describing
a possible enactment.

3The only difference in the axiom definitions w.r.t. the simple case, is the introduction of
branching path formulas, that do not require any new symbol name.
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Lemma 28. Given a model ω̂ of cKBU
m, let 〈ω, ω′, σX, σ

′
Y〉 be a tuple s.t.

〈ω, ω′, σX, σ
′
Y〉 = πc(ω̂), then it is embedded into ω̂.

Proof. Since the structure ω̂ is a model of the knowledge base cKBU
m, the cardi-

nality axioms ensures that from the interpretation of variable related auxiliary
concepts it is always possible to build consistent variable assignments as ob-
served in the proof of Theorem 39. The embedding relation among the quadru-
ple and the structure follows from the definition of the projection function π
and the previous lemma.

Theorem 40. Given an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX) of a consistently defined
conditional service, let ω̂ be a structure s.t. ω̂ = µ(ω, ω′, σX, σ

′
Y), then:

ω̂ |= cKBU
m

Proof. This theorem extends the result of Theorem 21 in order to deal with
new conditional axioms. Let ω̂ be the structure built applying the function µ
to the enactment: as done in the proof of Theorem 17, of which the function
is a proper extension, we can use the same argumentation we can prove that
ω̂ |= KBP .

Applying Theorem 34 we can conclude that in the given enactment exists
exactly one selected effect n∗ among these specified by the service.

So, hence the enactment itself implies that there is enough room to instan-
tiate new objects (if any), assuming Topm = Top′, given Theorem 38, we can
conclude that ω̂ |= K̃B

X,Y

c , hence that the instantiation of the axiom schema
∆KBI

c (Top′) is satisfied in ω̂.
In order to complete the proof, we need to show that also other axioms

deriving from the instantiation of schema ∆KBU
c (m) hold.

The key fact in the proof is the fact, that given the structure of these ax-
ioms, since for a given model ω̂ there is exactly one valid antecedent formula
φn∗ , we need only to show that for this conjunct also the consequent is sat-
isfied, while other conjuncts are satisfied in the provided interpretation since
their antecedents are evaluated to false. In fact, considering first-order formulas
without free variables or simple propositional variables, we have that:

φn ∧ ψn |= φn → ψn

¬φn |= φn → ψn

where ψn and φn are arbitrary sentences. Since branching path formula prop-
erties, if a structure ω̂ is s.t.:

ω̂ |= φn∗ ∧ ψn∗ ∧
∧

n∈leaves(E)∧n∗ 6=n

¬φn

where φn is a branching path formula, we have also that:

ω̂ |= φn∗ → ψn∗ ∧
∧

n∈leaves(E)∧n∗ 6=n

(φn → ψn)

|=
∧

n∈leaves(E)

(φn → ψn)
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where ψn are arbitrary sentences.
As in the previous case, we observe that axioms defined by in Equations

5.9, 5.10, 5.11, and 5.12 are a syntactical variation of which used in the proof of
Theorem 37, so we can adopt the same argumentation also here. They need some
adjustment in order to keep into account also instantiation variables (Equations
5.13 and 5.14).

Given an element x ∈ [m(A)∗]ω̂, since the construction we have that:

x ∈ A+(ω, σX, σ
′
Y)

that, according to the definition of the insert set, means that:

• x ∈ A+(ω, σX)

• or exists an effect 〈+, A, Y 〉 ∈ En∗ s.t. x = σ′Y(Y ) for some Y ∈ Yn∗ .

In the first case, we can conclude that x ∈ [m(A)+]ω̂, while in the second that
x ∈ Y ω̂. According to standard semantics, we can state that:

ω̂ |= x : m(A)+ t
⊔

〈+,A,Y 〉∈En∗

Y

hence, since the arbitrary choice of the element x, we can generalize the result,
obtaining that:

ω̂ |= ∀x.m(A)∗(x)→ m(A)+(x) ∨
∨

〈+,A,Y 〉∈En∗

Y (x)

On the other hand, given an element x ∈ [m(A)+ t
⊔
〈+,A,Y 〉∈En∗

Y ]ω̂, since the
standard semantics we have that:

• x ∈ [m(A)+]ω̂

• or exists an effect 〈+, A, Y 〉 ∈ En∗ s.t. x ∈ Y ω̂ for some Y ∈ Yn∗ .

In the first case, we can conclude that x ∈ A+(ω, σX), while in the second that
x = σ′Y(Y ). Applying the definition of the insert set and the construction of
the embedding function we can conclude that:

ω̂ |= x : m(A)∗

hence, generalizing as the previous case, that:

ω̂ |= ∀x.

m(A)+(x) ∨
∨

〈+,A,Y 〉∈E

Y (x)

→ m(A)∗(x)

For the proof of validity of other axioms please refer to result for the simple
case, since they unaffected by the introduction of conditional behavior (i.e., the
minimal-change semantics and the interpretation structure metric do not rely
on these aspects.).

Theorem 41. Given a model ω̂ of the knowledge base cKBU
m, then the quadruple

〈ω, ω′, σX, σ
′
Y〉 = π(ω̂), is an enactment of a conditional service S from the

state ω to the state ω′, having σX and σ′Y as, resp., input and instantiation
assignments.
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Proof. The proof provided for Theorem 40 can be employed also to prove this
claim, hence we have stated that, according to Corollary 9, there exists a node
n∗ ∈ leaves(E) s.t. ω̂ |= φn∗ and consequently related update formulas are
valid in the given structure.

Corollary 10. Let 〈ω′, σ′Y〉 ∈ S(ω, σX) be an enactment of a conditional service
S, then:

• for each concept name A ∈ A

Aω′ = A+
n (ω, σX, σ

′
Y) ∪ (Aω \A−n (ω, σX))

• for each role name P ∈ P

Pω′ = P+
n (ω, σX, σ

′
Y) ∪ (Pω \ P−

n (ω, σX))

where n is the selected effect in ω given σX, while ·+n and ·−n denotes resp.
the insert and delete set of a name associated to the corresponding leaf effect
specification.

Also the isomorphism theorem can be extended to conditional behavior ser-
vice.

Theorem 42. Let ω be a world state, σX a consistent input variable assignment,
S a conditional service accessible in ω using σX. If 〈ω′1, σ′1〉 and 〈ω′2, σ′2〉 are two
enactments in S(ω, σX), then they are isomorphic.

Proof. The proof is quite similar to Theorem 23, excepting the fact that only
selected effect specification and instantiation set is kept into account, so it essen-
tially relies on Corollary 10. But, since the initial state and the input assignment
are given and fixed, the atomic effect is always exactly identified, so the con-
ditional behavior does not play any significant role in this case. The complete
proof is omitted for the sake of brevity.

Theorem 43. A consistent and accessible conditional e-service S is valid w.r.t.
a world specification W iff the following implication holds:

cKBU
m |= τm(W)

where m is a name mapping function for the domain.

Proof. We assume that the service is valid: since it is also accessible and consis-
tent we have at least an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX). Let ω̃ = µ(ω, ω′, σX, σ

′
Y)

the embedding structure: according to Theorem 40 it is a model of the knowl-
edge based cKBU

m. W.l.o.g., we assume that there exists an axiom τm(C) v
τm(D) ∈ τm(W) s.t.:

ω̃ 6|= τm(C) v τm(D)

Now we consider two cases, given the select effect:

1. if there is no instantiation variable (Y = ∅);

2. otherwise if there is at least an instantiation variable (‖Y‖ > 0).
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In the first case, there is exactly one successor state ω′, so applying Lemma
15 and Corollary 6 we can conclude that:

ω′ 6|= C v D

In the second case, since we have assumed that the implication does not
hold, applying the same observations of the previous case we can also conclude
that:

ω′ 6|= C v D

but it is not enough to conclude the proof, since the definition of valid e-service
requires that exists at least a valid instantiation assignment satisfying the con-
straints, not that any assignment has this property. But, according to Theorem
42, as for simple e-service, a successor state is isomorphic to any other in the
same enactment. If we assume that 〈[ω′]∗, [σ′Y]∗〉 ∈ S(ω, σX) is the pair s.t.:

[ω′]∗ |=W

and since the interpretations [ω′]∗ and ω′ are isomorphic they must satisfying
the same description logic axioms, so:

ω′ |= C v D

Obtaining the contradiction that concludes the proof.
Now we assume that the implication holds, since the service is consistent

and accessible there exists at least an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX), but, since
we are assuming by contradiction, that the service is not valid, does not exist
any ω′ resulting from the enactment s.t.:

ω′ |=W

W.l.o.g., we assume that there exists an axiom C v D ∈ W s.t.:

ω′ 6|= C v D

Applying Theorem 40, we obtain a structure ω̃ that is also a model of the
knowledge based cKBU

m. Since the assumption, it is also a model of τm(W):

ω̃ |= τm(W)

that implies also that:
τm(C)ω̃ ⊆ τm(D)ω̃

According to Lemma 15 we have that the final state ω′ is embedded. w.r.t. the
name mapping m into ω̃, so we can apply Corollary 6, obtaining that τm(C)ω̃ =
Cω′ and τm(D)ω̃ = Dω′ , concluding that:

ω′ |= C v D

contradicting the hypothesis that ω′ is not a legal world state.

Theorem 44. Given a world specification W and an accessible and consistent
conditional service S, the problem of checking if S is also valid is in coNEXP.
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Proof. As done for other cases previously analyzed, we can solve the problem
applying the property proved in Theorem 43, reducing it to an implication
decision in C2 logics, hence we use the result of Proposition 1. Like other
reductions it is also linear in the size of the input (number and length of axioms,
preconditions and effects specifications).

Remark 25. The ability of model conditional behavior of e-service does not
substantially impact the complexity of decision procedures w.r.t. the simple case,
at least in the analysis of the complexity class membership, if we consider the
number of alternative behaviors as unary encoded. Since for each one we need
also to explicitly define the update/instantiation effects, this assumption is quite
reasonable.

5.2 Non-deterministic e-services

The non-deterministic behavior can now be introduced allowing the declaration
of a service that specifies a set of possible, mutually exclusive, effects instead of
a single one, even conditional, hiding the selection logic. This is consistent with
the requirement of strong encapsulation, that prevents from explicitly knowing
the service outcome selection process.

5.2.1 Preliminary definitions

In the following, we present the formal definitions of non-deterministic e-services
and related concepts.

In fact, while the specification of a non-deterministic e-service is a straight-
forward generalization of the conditional case, the definitions related to the up-
date semantics need to be accommodated in order to capture also the branching
of system evolution paths.

Definition 73 (Non-deterministic e-service). A non-deterministic e-service spec-
ification S, given a domain specification 〈A,P,O〉, is a quadruple formed by:

• a (possibly empty) finite set of input variable names XS;

• a (possibly empty) finite set of output or instantiation variable names YS;

• a (possibly empty) finite set of invocation precondition constraints PS;

• a finite non-empty set of conditional effect specifications ES.

Example 9. The ability to deal with non-deterministic behaviors turn extremely
useful to model a large class of e-government services: authoritative services.
In fact, several services provided by public administration are concerning with
allowing or disallowing a citizen to perform an action. Given the world spec-
ification introduced in Example 2, the following e-service T allows owners of
commercial activity (i.e., a shop) to ask for the authorization to start the busi-
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ness (i.e., such an activity it is regulated by some restrictive laws):

X = {x}
Y = ∅
P = x u Shop u ∃owner.> and not (∃owner−.x) u (∃authorizedFor.x)

E =
{{

+authorizedFor(∃owner−.x, x)
}
, ∅
}

Notice that the preconditions enforce the fact that the requestor has not been
authorized yet.

Remark 26. The above example points out that the simple service contract
specification cannot cope with the fact that an authorization can be granted ac-
cording to a complex business logic, which can possibly include some arbitrary
decision steps. In fact, they cannot be modeled in any feasible way, even allow-
ing for complex conditional execution paths. In other words, the only suitable
way is to deal with the service as a black-box that can eventually grant or deny
the requested authorization.

The definition of the semantics of non-deterministic e-services can be de-
vised considering that the executing agent (the service provider) simply non-
deterministically chooses a (conditional) effect and then realizes it. In other
words, the ramification degree is always finite and it is equal to the size of effect
set ES , in fact the other non-deterministic step (the instantiation of new objects)
is not relevant w.r.t. the ramification since all possible alternatives are isomor-
phic. Generally speaking, this is a restricted form of non-deterministic behavior,
but it can be usefully employed to cope with several application scenarios.

Given the previously stated approach, in case of non-deterministic e-services
the transition relation must be adjusted in order to keep into account possible
state ramifications, as well as the definition of service enactment provided at
page 69.

Definition 74 (Non-deterministic e-service transition relation). Let ω and ω′

be a pair of world states, s.t. the latter is resulting from the enactment of an
e-service S in the state defined from the former, given an input and an output
variable assignments σX and σ′Y consistently defined, there exists a system state
transition from ω to ω′ using the specified e-service effect iff there exists an effect
E ∈ ES s.t.:

• ω′ is a (potential) successor state of ω w.r.t. the given assignments ac-
cording to E;

• there does not exist any other potential successor state ω′′ of ω, w.r.t. the
same assignments and service effect, s.t. it is closer to ω than ω′ according
to the symmetric difference distance (that means that d(ω, ω′) ≤ d(ω, ω′′)
for any ω′′ ∈ ΩE(ω, σX, σ

′
Y) ).

Definition 75 (Non-deterministic e-service enactment). Let ω be a world state
and σX a consistent input variable assignment. Given an e-service S, the set
of possible enactments contains all the pairs 〈ω′, σ′Y〉 s.t. there exists a service
effect E ∈ ES s.t.:

• σ′Y is a consistent instantiation assignment of the selected effect in E w.r.t.
ω and σX;
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• ω and ω′ are in transition relation w.r.t. the assignment and the service
effect.

Clearly these definitions capture the intended semantics of a service behaving
non-deterministically, that at each activation selects an effect and update the
system state accordingly.

5.2.2 Formal properties

Once the required additional definitions have been introduced, we now discuss
about semantic properties of e-services in the non-deterministic case.

The definitions of activable service and consistent service effect provided
for other e-service kinds can be also applied to non-deterministic e-services.
Regarding non-deterministic e-services, we need also to introduce a stronger
requirement about effect consistency. In particular, a non-deterministic e-service
is well-defined iff all its conditional effects are well-defined and it is consistently
defined iff all of them are consistent. Since the number of effects is linearly
bounded by the size of the problem instance, the associated decision problems
are also in NEXP complexity class.

On the other side, the validity property can be restated as following:

Definition 76 (Valid non-deterministic e-service). Let S be a non-deterministic
e-service, it is valid w.r.t. a world specification W iff:

• each effect E ∈ ES is consistent;

• for each legal world state ω, for each consistent input assignment σX, s.t.
the service is accessible in ω using it, there exists at least a legal state ω′

in the enactment.

While we are requiring that all service effects are always consistent, we are
relaxing the constraint regarding the “correctness” of the final state: we are, in
fact, allowing for potentially unsafe behaviors since, in every activation condi-
tion, we require only that al least a legal successor state exists. In other words,
we are assuming that a legal e-service in the community always selects a legal
final state among alternative paths obtained from the transition relation: the
validity property only ensures that every time the service is correctly activated,
it can fulfill its own declared contract. However, update repair can be easily
extended also to conditional and non-deterministic services.

Moreover, despite the well-foundedness and consistency of each effect can
be checked essentially taking into account only an element (effect) at time, re-
ducing such problems to the corresponding ones for deterministic e-services, the
analysis of validity of the whole e-service must be carried on considering all
possible behaviors. In order to cope with this issue, we adopt a strategy similar
to the one employed to analyze the repairability of a service: in other terms
we embed the service transition into an interpretation structure s.t. each possi-
ble transition path is represented, employing suitable name mapping functions
that enforce that each candidate effect is described using its own “namespace”
without interfering with other ones.

Given a service S, let ES = {E1, . . . , El} be the set off possible effects, we
define l mapping functions mi s.t. mi(x) = xi, where i ranges in the interval
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1 . . . l, and we introduce distinct names Topi for the active domain of each exe-
cution path. Moreover, while in the service repair the instantiation variables do
not play any relevant role (the repair step does not instantiate any new object),
in this case we need also consider that each execution path can instantiate a
different set of objects. Consequently we need to introduce a distinct name Yi

for each instantiation variable name Y ∈ YS and for each non-deterministic
effect in ES . While the axiom schema ∆KBU

c (m), reported in Table 5.3, is left
untouched, we need to adjust the axioms involved in the formalization of object
instantiation as shown in Table 5.4.

Let E be a tree effect specification E ∈ ES of the service S, we define a
new knowledge base nKBU

m adding to the knowledge base KBP the axioms
obtained instantiating the schemas ∆KBI

n(Top′,m) and ∆KBU
c (m) for each

concept A ∈ A, role name P ∈ P and instantiation variable in Y ∈ YS , using
the name mapping function m as previously shown.

Table 5.4: The axiom schema ∆KBI
n(Top′,m).

Where 〈Yn, En〉 = v(n) is the leaf effect specification in the tree E
associated to the node n, φn is the corresponding branching path
formula and Y =

⋃
n∈leaves(E) Yn.

∧
n∈leaves(E)

φn → ∀x.Top′(x)↔

(
Top(x) ∨

∨
Y ∈Yn

m(Y )(x)

)
(5.23)∧

Y ∈Y

m(Y ) v Top′ u ¬Top (5.24)∧
n∈leaves(E)

φn →
∧

Y ∈Yn

∃=1x.m(Y )(x) ∧
∧

Y ∈Y\Yn

∃=0x.m(Y )(x)

(5.25)∧
Y ∈Y,Y ′∈Y,Y 6=Y ′

m(Y ) um(Y ′) v ⊥ (5.26)

Given an injective renaming function m, we can easily extend claims of
Theorems 38 and 39, once we have accordingly adjusted the embedding function
in order to deal with it.

Also the definition of enactment embedding relation need to be accommo-
dated so that also the instantiation variable renaming can be kept into account.

Definition 77 (Non-deterministic e-service enactment embedding relation).
Given a pair of world states ω = 〈∆ω, ·ω〉 and ω′ = 〈∆ω′ , ·ω′〉, defined on
an interpretation domain that is a subset of U, an input assignment σX and
an instantiation assignment σ′Y both consistent w.r.t. ω, let m be a func-
tion that maps each concept (resp. role or output variable) name A (resp. P
or Y ) into a new one m(A) (resp. m(P ) or m(Y )), let Top and Topm be
new concept names and let ω̂ = 〈U, ·ω̂〉 be an interpretation over the alphabet
〈A∪X∪Y∪m(A)∪{Top,Topm} ,P∪m(P),O〉. The quadruple 〈ω, ω′, σX, σ

′
Y〉
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is embedded into the interpretation ω̂ iff the following conditions hold:

∆ω = Topω̂

∆ω′ = Topω̂
m

Nω = N ω̂

Nω′ = m(N)ω̂

σX(X) = X ω̂

σ′Y(Y ) = m(Y )ω̂∥∥X ω̂
∥∥ = 1∥∥m(Y )ω̂
∥∥ = 1

oω = oω̂

for each N ∈ A ∪P, o ∈ O, X ∈ X and Y ∈ Y.

As in previous cases, from the definitions of world state embedding relation
and generalized embedding relation, keeping into account the renaming function
m, we can easily prove the following claim.

Lemma 29. Given a quadruple 〈ω, ω′, σX, σ
′
Y〉 and an interpretation ω̃, s.t. the

quadruple is embedded into it according to a name mapping function m, then:

ω  ω̃

on the concept alphabet A, and:

ω / σX  ω̃

on the concept alphabet A ∪X, and:

ω / 〈σX, σ
′
Y〉 m|Y ω̃

where the domain of instantiation assignment σ′Y is restricted to Yn and the
name mapping function is restricted to the domain Y, and:

ω′  m ω̃

on the concept alphabet A.

Now, we can introduce the adjusted embedding function: it is quite similar
to which one defined at page 74, excepting that it applies the renaming function
also to instantiation variable names.

Given a quadruple 〈ω, ω′, σX, σ
′
Y〉, and name mapping function m consis-

tently defined, we define an embedding function µn that maps such structures
into another interpretation ω̂ s.t.:

• the interpretation domain is the whole universe (∆ω̂ = U);

• the interpretation of concepts, roles and objects in the starting state is
preserved (Nω = N ω̂);

• the interpretation of concepts, roles and objects in the final state is pre-
served (Nω′ = m(N)ω̂);
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• the interpretation of Top is the active domain of ω (Topω̂ = ∆ω);

• the interpretation of Topm is the active domain of ω′ (Topω̂
m = ∆ω′);

• the interpretation of New is U \∆ω;

• the interpretation of variable auxiliary concepts is defined according to
the assignment (σX(X) = X ω̂ and σ′Y(Y ) = m(Y )ω̂ if Y is assigned in
σ′Y(Y ), ∅ = m(Y )ω̂ otherwise);

• the update-defining concepts and roles are interpreted according to the
corresponding concept (resp. role) insert or delete set ([m(A)+]ω̂ = A+(ω, σX),
[m(A)−]ω̂ = A−(ω, σX), [m(A)∗]ω̂ = A+(ω, σX, σ

′
Y));

• the object spy is assigned to an element of Newω̂, if any;

• the role aux is interpreted as
{
spyω̂

}
× Newω̂.

This is a non deterministic function, since the choice of the spy-point element:
alternatively it can be treated as a multi-function.

The function πn computes the inverse of µn, projecting out from an inter-
pretation ω̂ a quadruple, representing a possible enactment between the world
states ω and ω′ given the variable assignments, and is defined only for structures
that are models of the knowledge base nKBU

m.
We can also extend to this case previously proved claims:

Lemma 30. Given a quadruple 〈ω, ω′, σX, σ
′
Y〉, and structure ω̂ s.t. ω̂ =

µn(ω, ω′, σX, σ
′
Y), then the quadruple is embedded into ω̂.

Lemma 31. Given a model ω̂ of nKBU
m, let 〈ω, ω′, σX, σ

′
Y〉 be a tuple s.t.

〈ω, ω′, σX, σ
′
Y〉 = πn(ω̂), then it is embedded into ω̂.

Theorem 45. Given an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX) of a consistently defined
non-deterministic service, then there exists an effect E ∈ ES s.t. let m be a suit-
able name mapping function and let ω̂ be a structure s.t. ω̂ = µn(ω, ω′, σX, σ

′
Y):

ω̂ |= nKBU
m

where nKBU
m is the knowledge base describing the effect E.

Proof. Given the definition of enactment of a non-deterministic service, if there
exists a transition between two states, a service effect have been selected among
declared ones and enforced by the service provider. Such an effect E is, generally
speaking, a conditional effect, thus, in order to prove the claim, we can employ
Theorem 40.

By contradiction, we assume that the structure ω̂ is not a model of the
knowledge base cKBU

m. Given such a structure we employ a new transformation
ν s.t. the interpretation of every name, excepting those related to instantiation
variables Y ∈ Y, is preserved, while each set m(Y ) is replaced by a set named
as Y having the same extension:

m(Y )ω̂ = Y ω̃
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obtaining a new structure ω̃. It is worth noticing that is exactly the same
interpretation structure that we obtain applying the basic embedding function
µ to the given enactment:

ν(ω̂) = ω̃ = µ(ω, ω′, σX, σ
′
Y)

Since it is a suitable enactment according to the service effect specification,
applying Theorem 40 we can also conclude that:

ω̃ |= cKBU
m

But this is a contradiction: in fact, since we have assumed that knowledge base
nKBU

m is not satisfied in ω̂, at least an axiom must not hold on such structure.
If we consider the definition of both knowledge bases (nKBU

m and cKBU
m), we

observe that there some axioms that are identical in both theories and others
that are a simply a rewriting of one of the other theory applying the concept
renaming (substitution) Y/m(Y ) for some Y ∈ Y. Consequently, in we consider
the transformation employed to build the structure ω̃, we can conclude that also
nKBU

m must hold in ω̂.

We can also generalize the result concerning the relation among interpreta-
tion structures induced by the definition of the function ν into this useful claim,
that easily enables us to extend results provided for conditional services.

Corollary 11. Given two interpretation structures ω̂ and ω̃, a domain specifi-
cation alphabet, a service alphabet and a suitable name mapping function m, in-
volving also instantiation variables Y, if they are s.t. ν(ω̂) = ω̃, then the evalu-
ation of any first-order formula, expressed using provided alphabets, is preserved
applying the renaming Y/m(Y ) for each instantiation variable name Y ∈ Y.

Proof. The provided structure are identical up to renaming of singleton related
to instantiation variables, so actually indistinguishable using first-order logic
formulas.

Corollary 12. Given a quadruple 〈ω, ω′, σX, σ
′
Y〉, then:

ν(µn(ω, ω′, σX, σ
′
Y)) = µ(ω, ω′, σX, σ

′
Y)

Theorem 46. Given a model ω̂ of the knowledge base nKBU
m, for some service

effect specification E ∈ ES, then the quadruple 〈ω, ω′, σX, σ
′
Y〉 = πn(ω̂), is an

enactment of the non-deterministic service S from the state ω to the state ω′,
having σX and σ′Y as, resp., input and instantiation assignments, enforcing the
effect E.

Proof. The claim follows from the observation that the structure ν(ω̂) is a model
of the knowledge base cKBU

m, and according to Theorem 41 a system transi-
tion resulting from the conditional effect enactment has taken place. The result
follows from the definition of the enactment of non-deterministic service enact-
ment.

Given a world state ω, an input assignment σX, and a finite set of pairs
Λ = {〈ω′1, (σ′Y)1〉, . . . , 〈ω′l, (σ′Y)l〉}, where ωi is a world state and (σ′Y)i is an
instantiation assignment, suitable given ω, we define a new mapping function
µ(ω, σX,Λ) that embeds all arguments into a structure ω̂ s.t.:
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• the interpretation domain is the whole universe (∆ω̂ = U);

• the interpretation Top is the active domain;

• the interpretation of New is U \∆ω;

• the object spy is assigned to an element of Newω̂, if any;

• the role aux is interpreted as
{
spyω̂

}
× Newω̂;

• for remaining names, the interpretation function is obtained by the union
of interpretation functions of µn(ω, ω′i, σX, (σ′Y)i), s.t. each one is defined
using a different name mapping function mi, s.t. Topmi

= Topi and
mi(x) = xi.

The provided definition is well-founded since the various interpretation functions
µn agree upon the interpretation of shared names.

Given the definition the following property holds:

Lemma 32. Given and structure ω̂ s.t. ω̂ = µ(ω, σX,Λ), each quadruple
〈ω, ω′i, σX, (σ′Y)i〉, s.t. 〈ω′i, (σ′Y)i〉 ∈ Λ, is embedded into ω̂ as enactment.

Theorem 47. A consistent and accessible non-deterministic e-service S is valid
w.r.t. a world specification W, iff the following implication holds:

KBP∧τ(W)∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)
|=
∨

E∈E
τmE

(W) (5.27)

where mE is the name mapping function for the domain and the instantiation
variable names related to effect E ∈ E.

Proof. We assume that such an implication holds, but the service is not valid.
It means that al least exists a world state ω∗ and an input assignment σ∗X s.t.,
for any possible service enactment, the transition results into a non-valid world
state.

W.l.o.g. we consider, for each possible service effect E ∈ E , an output
assignment (σ′Y)E and the world state ω′E resulting from the enactment of the
service, realizing the considered effect, given the starting state and the variable
assignments. Since the service is assumed as non-valid, we can actually select
such a kind of world states. We also point out, that since, for a given pair of
starting state and input variable assignment, all successor states are isomorphic
(see Theorem 42), we can restrict the analysis to a single output assignment
for each effect, since other ones result into successor states isomorphic to the
considered one, and, so equivalent in terms of the evaluation of the first-order
formulas.

Now, we employ the embedding function µ in order to build a new inter-
pretation structure ω̂, having Λ 3 〈ω′E , (σ′Y)E〉. Since properties of structure
embedding we can conclude that for any E:

ω̂ 6|= τmE
(W)

denoting as mE the name mapping functions, or, in other words, that:

ω̂ 6|=
∨

E∈E
τmE

(W)
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On the other hand, applying Theorem 45, since enactments are correctly
defined despite they are supposed lead to non-legal world states, we can conclude
also that:

ω̂ |= nKBmE

for each E ∈ ES , or, given the definition of the knowledge base, that:

ω̂ |=
∧

E∈E

(
KBP ∧∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)

Factoring the formula w.r.t. the term KBP , we can conclude that implication
antecedent is satisfied in ω̂ and, since the implication is assumed to hold, it
follows that:

ω̂ |=
∨

E∈E
τmE

(W)

Hence a contradiction.
Now, we suppose that the given service is valid, but that the implication

does not hold. In other terms, that there exists a structure ω̂∗, s.t. despite
implication antecedent holds, it does not satisfy the consequent.

We can apply the projection function π considering every service effect,
obtaining for each one a quadruple 〈ω∗, ω′E , σ∗X, (σ′Y)E〉 that, according to The-
orem 46, is an enactment, since the implication antecedent includes and, hence,
implies the knowledge base nKBU

mE
for each service effect.

Since the hypothesis about the service validity, we can also conclude that
at least for a service effect E∗, the corresponding final world state ω′E∗ is legal
and, since, given the Lemma 32, it is embedded into ω̂∗, also that:

ω̂∗ |= τmE
(W) |=

∨
E∈E

τmE
(W)

From this contradiction follows the claim.

Theorem 48. Given a world specification W and an accessible and consistent
non-deterministic service S, the problem of checking if S is also valid is in
coNEXP.

Proof. Since we solve the decision problem applying the property proved in
Theorem 47, reducing it to an implication decision problem in C2 logics. We
point out that the size of reasoning problem is linearly bounded by the size of
the input specification, hence applying the result of Proposition 1, we can prove
the claim.

Moreover, in order to ensure that the specification of a non-deterministic e-
service is not redundant we need to check also that each non-deterministic effect
can be actually selected: in fact, if an effect is inherently invalid it will never
be selected in the decision step from the service provider (assuming a consistent
behavior of the latter).

Definition 78 (Non-redundant conditional effect). Given a conditional effect
E ∈ E of an e-service having precondition P and a world specification W, it
is non-redundant iff there exists at least a legal world state ω and an input
assignment σX s.t. the service is accessible and the given effect can be enforced.
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Theorem 49. Given a world specification W an effect E of an accessible
non-deterministic e-service S, it is non-redundant iff knowledge base τ(W) ∧
nKBU

me
∧ τme

(W) is satisfiable, where nKBU
me

is the knowledge base associated
to the specification of the service effect.

Proof. Given an accessible and non-redundant service effect E w.r.t. a world
specification W, there must exist at least an enactment 〉ω′, σ′Y〉 ∈ S(ω,X),
where ω and ω′ are two legal world states, and σX and σ′Y are resp. a legal
input ad instantiation assignments.

So according to Theorem 45, there exists a structure ω̂ s.t. the enactment
is embedded into it and it is also a model of nKBU

me
. Moreover, given Lemma

29 both world states are embedded into such a structure, directly or applying
the name mapping function mE , so applying Theorems 1 and 2 and Corollaries
5 and 6 we can easily conclude that also τ(W) and τme(W) hold in ω̂.

Now we assume that such a knowledge base is satisfiable, so there exists a
model ω̂, that according to Theorem 46 embeds an enactment of the given service
effect from the world state ω to the world state ω′ using the provided assignment.
Since nKBU

me
⊃ KBP ⊇ K̃B, applying Corollary 3 we can conclude that the

given service is also accessible and that the initial and final states are also
legal, so the service effect can be actually enforced by the service provided and
consequently it is not redundant.

In order to complete the analysis of non-deterministic e-service, we need to
keep into account also repairability properties. As we show in the following,
the results achieved for simple e-services can be easily extended to this more
complex scenario.

Remark 27. As done for the basic analysis of conditional and non-deterministic
e-services, the most relevant adjustment in the framework is due to the fact that
instantiation and update effects can substantially differ along various execution
paths according to explicitly stated decision points (i.e., conditional effects) or
implicit ones. For example, an object can be instantiated only if a given con-
dition holds or only if a non-deterministic effect is selected. In fact, the repair
enumeration approach devised in 4.3 relies essentially on a syntactical strategy.
But as can be easily verified, such an approach is sound w.r.t. the fact that an
instantiation variable name Y can be actually assigned to a domain element: in
fact, whenever an instantiation variable name Y ∈ YS is not bound because the
effect selected does not include it into its instantiation set, the variable auxiliary
concept (e.g., m(Y )) is simply interpreted as an empty set. It is worth noticing
the all previously provided definitions (and results) are still valid.

We start adjusting Definition 57 so that we can deal also with instantiation
variable name mapping function.

Definition 79 (Non-deterministic e-service repaired enactment embedding rela-
tion). Given three world states (ω, ω′, and ω′′), having as interpretation domain
a subset of U and s.t. ∆ω′ = ∆ω′′ , an input assignment σX and an instantiation
assignment σ′Y both consistent w.r.t. ω, let m and n be two functions s.t. the
former maps each concept (resp. role or output variable) name A (resp. P or Y )
into a new one m(A) (resp. m(P ) or m(Y )) and the latter maps each concept
(resp. role) name A (resp. P ) into a new one n(A) (resp. n(P )), and let Top,
Topm and Topn be new concept names and let ω̂ = 〈U, ·ω̂〉 be an interpretation
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over the alphabet 〈A∪X∪Y∪m(A)∪ n(A)∪ {Top,Topm,Topn} ,P∪m(P)∪
n(P),O〉. We say that the tuple is embedded by the repair into the interpretation
ω̂ iff the pair ω, ω′ is embedded as non-deterministic e-service enactment into
ω̂ and the following auxiliary conditions hold:

∆ω′′ = Topω̂
n

Nω′′ = n(N)ω̂

We can extend Lemma 22 to this new case obtaining the following claim:

Lemma 33. Given a quintuple 〈ω, ω′, ω′′, σX, σ
′
Y〉 and an interpretation ω̂, s.t.

the quintuple is embedded into it, then:

1. the quadruple 〈ω, ω′, σX, σ
′
Y〉 is embedded into ω̂;

2. the repaired world state ω′′ is embedded, according to the mapping n, into
the structure ω̂:

ω′′  n ω̂

We need also to adjust axiom schemas provided for the simple case, intro-
ducing instantiation variable name mapping too. So given a service S, an effect
specification E for the same service and a repair R, we define two new axiom
schemas denoted as ∆KBR

n (m,n) and ∆KBC
n (m,n), presented in Tables 5.5

and 5.6, where ·+, ·−, ·∗ denotes new auxiliary concept and role names intro-
duced for every concept A or role P in the domain specification.

As done at page 95, given the axiom schema ∆KBU
n (m,n) = ∆KBR

n (m,n)∪
∆KBC

n (m,n), we define a new knowledge base nKBU
m,n adding to the knowledge

base nKBU
m, defined as shown at page 128, the instantiation of such a schema

on the domain specification alphabet.
We need also to extend the definition embedding function µn, provided at

page 129, as previously done in order to deal also with repaired enactments:
given a quintuple 〈ω, ω′, ω′′σX, σ

′
Y〉 we define an embedding function µR

n that
maps such structures into another interpretation ω̂ s.t.:

• the interpretation domain is the whole universe (∆ω̂ = U);

• the interpretation of concepts, roles and objects in the starting state is
preserved (Nω = N ω̂);

• the interpretation of concepts, roles and objects in the update resulting
state is preserved (Nω′ = m(N)ω̂);

• the interpretation of concepts, roles and objects in the repair resulting
state is preserved (Nω′′ = n(N)ω̂);

• the interpretation of Top is the active domain of ω (Topω̂ = ∆ω);

• the interpretation of Topm and Topn is the active domain of ω′ (Topω̂
m =

Topω̂
n = ∆ω′ = ∆ω′′)4;

• the interpretation of New is U \∆ω;

4Please recall that by definition the interpretation domain of ω′ and ω′′ is the same.
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Table 5.5: The axiom schema ∆KBR
n (m,n)

Topm ≡ Topn (5.28)

n(A) ≡ (m(A) u ¬n(A)−) t n(A)+ (5.29)

n(A)+ ≡
⊔

〈+,A,X〉∈R

X t
⊔

〈+,A,Y 〉∈R

m(Y ) t
⊔

〈+,A,O〉∈R

{O} (5.30)

n(A)− ≡
⊔

〈−,A,X〉∈R

X t
⊔

〈−,A,O〉∈R

{O} (5.31)

∀x, y.n(P )(x, y)↔ (m(P )(x, y) ∧ ¬n(P )−(x, y)) ∨ n(P )+(x, y) (5.32)

∀x, y.n(P )+(x, y)↔
∨

〈+,P,X,X′〉∈R

X(x) ∧X ′(y) (5.33)

∨ . . .

∀x, y.n(P )−(x, y)↔
∨

〈−,P,X,X′〉∈R

X(x) ∧X ′(y) (5.34)

∨
∨

〈−,P,X,O〉∈R

X(x) ∧O = y

∨
∨

〈−,P,O,X〉∈R

O = x ∧X(y)

∨
∨

〈−,P,O,O′〉∈R

O = x ∧O′ = y

Table 5.6: The axiom schema ∆KBC
n (m,n)

n(A)+ u (A tm(A)∗) v ⊥ (5.35)
n(A)+ u (n(A)− tm(A)−) v ⊥ (5.36)
n(A)− u (m(A)+ tm(A)−) v ⊥ (5.37)

n(A)− v A (5.38)
∀x, y.n(P )+(x, y) ∧ (P (x, y) ∨m(P )∗(x, y)) → ⊥ (5.39)

∀x, y.n(P )+(x, y) ∧ (n(P )−(x, y) ∨m(P )−(x, y)) → ⊥ (5.40)
∀x, y.n(P )−(x, y) ∧ (m(P )+(x, y) ∨m(P )−(x, y)) → ⊥ (5.41)

∀x, y.n(P )−(x, y) → P (x, y) (5.42)
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• the interpretation of variable auxiliary concepts is defined according to
the assignment (σX(X) = X ω̂ and σ′Y(Y ) = m(Y )ω̂ if Y is assigned in
σ′Y(Y ), ∅ = m(Y )ω̂ otherwise);

• the update-defining concepts and roles are interpreted according to the
corresponding concept (resp. role) insert or delete set ([m(N)+]ω̂ =
N+(ω, σX), [m(N)−]ω̂ = N−(ω, σX), [m(N)∗]ω̂ = N+(ω, σX, σ

′
Y));

• the repair related concepts and roles are interpreted according to the corre-
sponding concept (resp. role) insert or delete set ([n(N)−]ω̂ = N−

R (ω, σX),
[n(N)+]ω̂ = N+

R (ω, σX, σ
′
Y));

• the object spy is assigned to an element of Newω̂, if any;

• the role aux is interpreted as
{
spyω̂

}
× Newω̂.

Also in this case we provide a projection function πR
n computes the inverse of

µR
n , extracting from an interpretation ω̂ a quintuple, representing possibly an

enactment between the world states ω and ω′ repaired into ω′′, given the variable
assignments, and is defined only for structures that are models of the knowledge
base nKBU

m,n. The devised construction is a conservative extension of the one
used for the enactment embedding relation.

We can also extend results of Lemmas 23, 24 and 25, obtaining the following
useful claims.

Lemma 34. Given a quintuple 〈ω, ω′, ω′′, σX, σ
′
Y〉, and structure ω̂ s.t. ω̂ =

µR
n (ω, ω′, ω′′, σX, σ

′
Y), then the quintuple is embedded into ω̂ as repaired enact-

ment.

Lemma 35. Given a model ω̂ of nKBU
m,n, let 〈ω, ω′, ω′′, σX, σ

′
Y〉 be a tuple s.t.

〈ω, ω′, ω′′, σX, σ
′
Y〉 = πR

n (ω̂), then it is embedded into ω̂ as repaired enactment.

Lemma 36. Given a quintuple 〈ω, ω′, ω′′, σX, σ
′
Y〉, and structure ω̂ s.t. ω̂ =

µR
n (ω, ω′, ω′′, σX, σ

′
Y), then, let ω̄ be the structure s.t. ω̄ = µn(ω, ω′, σX, σ

′
Y),

then it is equal to ω̂ restricted to the common alphabet.

Lemma 37. Given a model ω̂ of nKBU
m ∧∆KBR

n (m,n), let 〈ω, ω′, ω′′, σX, σ
′
Y〉

be a tuple s.t. 〈ω, ω′, ω′′, σX, σ
′
Y〉 = πR

n (ω̂), then 〈ω, ω′, σX, σ
′
Y〉 = πn(ω̂).

Theorem 50. Given an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX) of a consistently defined
service, and a consistent simple repair R ∈ RS and repaired successor state ω′′

of ω′ using R, let ω̂ be a structure s.t. ω̂ = µR
n (ω, ω′, ω′′, σX, σ

′
Y), then:

ω̂ |= nKBU
m,n

Proof. This result is a generalization of Theorem 30 and the proof is quite
similar, once it has been adjusted to keep into account conditional effect speci-
fications and related enhancements.

According to Lemma 36 we can apply Theorem 45 to show that the structure
ω̄ is a model of the knowledge base nKBU

m. Since the structure ω̂ is an extension
of the structure ω̄ that simply adds new name interpretations, without altering
the interpretation on which the satisfiability result relies, we can also conclude
that:

ω̂ |= nKBU
m
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so, as in previous proofs, we need only to show that additional axioms also hold
in order to prove the claim. Given the definition of the embedding function, the
interpretation of concept Topm and Topn is always the same so the constraints
in Eq. 5.28 is satisfied.

In order to completely prove that ω̂ |= ∆KBR
n (m,n), we need to show that

the remain axioms hold too. These axioms encode the extension affected by
the repair as it is specified by the mean of repair concept/repair insert/delete
set. For the sake of succinctness, we will show the result using the axiom of Eq.
5.30, other ones can be obtained using the same argumentation.

According to the definition of mapping function we have that:

[n(A)+]ω̂ = A+
R(ω, σX, σ

′
Y)

On the other hand, according to the definition of repair concept insert set:

[n(A)+]ω̂ =
⋃

〈+,A,X〉∈R

{σX(X)} ∪
⋃

〈+,A,Y 〉∈R

{σ′Y(Y )} ∪
⋃

〈+,A,O〉∈R

{Oω}

Applying the standard DL semantics to the right side of the axioms we have
also that:  ⊔

〈+,A,X〉∈R

X t
⊔

〈+,A,Y 〉∈R

m(Y ) t
⊔

〈+,A,O〉∈R

{O}

ω̂

=

⋃
〈+,A,X〉∈R

X ω̂ ∪
⋃

〈+,A,Y 〉∈R

m(Y )ω̂ ∪
⋃

〈+,A,O〉∈R

{
Oω̂
}

Applying the definition of embedding relation among strcutures, it follows that: ⊔
〈+,A,X〉∈R

X t
⊔

〈+,A,Y 〉∈R

m(Y ) t
⊔

〈+,A,O〉∈R

{O}

ω̂

=

⋃
〈+,A,X〉∈R

{σX(X)} ∪
⋃

〈+,A,Y 〉∈R

{σ′Y(Y )} ∪
⋃

〈+,A,O〉∈R

{Oω}

Concluding that:

ω̂ |= n(A)+ ≡
⊔

〈+,A,X〉∈R

X t
⊔

〈+,A,Y 〉∈R

m(Y ) t
⊔

〈+,A,O〉∈R

{O}

The argumentation can be extended also to other axioms encoded by Equations
5.31, 5.33, and 5.34, completing the proof of the claim.

The rest of the proof (ω̂ |= ∆KBC
n (m,n)) is identical to the second part of

the proof of Theorem 30 and it is omitted for brevity.

As done for simple e-service repair, we can generalize the above result, ob-
taining the following claim.

Corollary 13. Given an enactment 〈ω′, σ′Y〉 ∈ S(ω, σX) of a consistently de-
fined service, and a simple repair R ∈ RS and a candidate repaired successor
state ω′′ of ω′ using R, let ω̂ be a structure s.t. ω̂ = µR

n (ω, ω′, ω′′, σX, σ
′
Y), then:

ω̂ |= nKBU
m,n ∪∆KBR

n (m,n)
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Now we extend also Theorem 31:

Theorem 51. Given a model ω̂ of the knowledge base nKBU
m,n ∧ τn(W), then

the quintuple 〈ω, ω′, ω′′, σX, σ
′
Y〉 = πR

n (ω̂), is s.t. ω′′ is a successor state of the
enactment from the state ω to the state ω′, using σX and σ′Y as, resp., input
and instantiation assignment, applying the repair R ∈ RS.

Proof. As the previous theorem, also this one can be proved using a simple
extension of the proof of the corresponding result for simple e-services.

In fact, as in the latter case, we need to prove that:

1. there exists an enactment of the service S from ω to ω′ using σX and σ′Y
as variable assignments;

2. the repair R is consistently defined w.r.t. the provided initial world state
and variable assignments;

3. the state ω′′ is resulting from the application of repair R;

4. the state ω′′ is legal w.r.t. the world specification W.

The first point of the proof directly follows from the application of Lemma
37 and Theorem 46.

Regarding the point 2 we need to prove that constraints imposed in the
definition of consistent repair are satisfied in structures projected out from the
model ω̂ applying the function πR

n . W.l.o.g. we consider the constraint:

P−
R (ω, σX) ∩ (P+(ω, σX, σ

′
Y) ∪ P−(ω, σX)) = ∅

By contradiction we assume that this constraint is not satisfied, i.e., that there
exists a pair 〈x∗, y∗〉 s.t.:

〈x∗, y∗〉 ∈ P−
R (ω, σX) ∩ P+(ω, σX, σ

′
Y)

But, given the definition of the mapping, from this assumption immediately
follows that:

〈x∗, y∗〉 ∈ [n(P )−]ω̂ ∩ [n(P )+]ω̂

violating the constraint defined in 5.41, that is assumed satisfied in ω̂, since it
is a model of the whole knowledge base.

To prove the point 3, we need to show that also constraints imposed in the
definition of repair successor state are satisfied in resulting out from the model
ω̂ applying the function πR

n . W.l.o.g. we consider the constraint:

Aω′′ = (Aω′ \A−R(ω, σX)) ∪A+
R(ω, σX, σ

′
Y)

By contradiction we assume that this constraint is not satisfied, i.e., that there
exists an element x∗ s.t. x∗ ∈ Aω′′ despite x∗ 6∈ (Aω′\A−R(ω, σX))∪A+

R(ω, σX, σ
′
Y).

But, given the definition of the mapping, from this assumption immediately fol-
lows that:

x∗ ∈ n(A)ω̂

x∗ 6∈ (m(A)ω̂ \ [n(A)−]ω̂) ∪ [n(A)+]ω̂
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Applying the standard semantics, it follows that:

ω̂ |= x∗ : n(A) u ¬((m(A) u ¬n(A)−) t n(A)+)

clashing with Eq. 5.29, that is assumed satisfied in ω̂.
About the active domain of states ω′ and ω′′, it is preserved since the

Eq. 5.28 and the definition of the mapping that interprets ∆ω′ and ∆ω′′ on
[Topm]ω̂ = [Topn]ω̂.

Regarding the interpretation of object names, we observe that also in this
case since they are always the same, they are constantly interpreted on the same
universe elements in all structures (ω, ω′, ω′′, and ω̂).

In order to complete the prove, we apply Point 1 of Lemma 33. Since ω′′ is
embedded into ω̂ according to the mapping n, using the Corollaries 6 and 5, we
can show that two structures agree upon the renaming on the interpretation of
set on which the evaluation of constraints in the world specification W relies.
Since τn(W) is satisfied in ω̂, then W also holds in ω′′, that turn to be a legal
world state.

Stated these foundational results we can now extend the definition of re-
pairable e-service to the non-deterministic case.

Definition 80 (Repairable non-deterministic e-service). Let ES be effects of a
non-deterministic e-service S, and let RS be the set of repairs for the service S.
S is repairable w.r.t. a world specification W iff:

• effects E ∈ ES are consistent;

• for each legal world state ω, for each consistent input assignment σX, s.t.
the service is accessible in ω using it, there exists at least a state ω′ in the
enactment and a repair R ∈ RS s.t. the repaired state ω′R is legal.

In order to reason about multiple possible repairs, we apply the same strat-
egy devised for simple e-services, keeping into account multiple “concurrent”
execution flows, using different name mapping functions with mutually disjoint
codomains in order to avoid any possible conflict among them.

Remark 28. We point out that in the case of non-deterministic e-service we
have two sources of behavior branching:

1. the service non-determinism: we need to consider any possible choice of
the service provider regarding the enactment outcome;

2. the repair selection: any possible simple repair must be considered.

Generally speaking, we need to keep into account any possible repair for any
possible service effect: while the latter is linear in the size of the input the
former, according to Theorem 26, is exponential in the problem specification
size.

Given a world state ω, an input assignment σX, and a finite set of pairs
Λ = {〈ω′1, (σ′Y)1〉, . . . , 〈ω′l, (σ′Y)l〉}, where ωi is a world state and (σ′Y)i is an in-
stantiation assignment, suitable given ω, a finite set of repair R = {R1, . . . , Rr}
and a finite set Ω =

{
ω′′1,1, . . . , ω

′′
1,r, . . . , ω

′′
l,1, . . . , ω

′′
l,r,
}

of world states, we de-

fine a new mapping function µR(ω, σX,Λ,Ω) that embeds all arguments into a
structure ω̂ s.t.:
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Figure 5.1: An example of possible execution paths of a non-deterministic e-
service under repair.

This figure depicts an example of possible execution paths of a
non-deterministic e-service having 3 effects, considering 4 differ-
ent simple repairs: all the world states ω are embedded into an
interpretation structure ω̂ encoded using suitable name mapping
functions over mutually disjoint alphabets.
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• the interpretation domain is the whole universe (∆ω̂ = U);

• the interpretation Top is the active domain;

• the interpretation of New is U \∆ω;

• the object spy is assigned to an element of Newω̂, if any;

• the role aux is interpreted as
{
spyω̂

}
× Newω̂;

• for remaining names, the interpretation function is obtained by the union
of interpretation functions of µR(ω, ω′i,Ωi, σX, (σ′Y)i), s.t.:

– each one is defined using a different name mapping function mi hav-
ing Topmi

= Topi and mi(x) = xi;

– Ωi is defined as
{
ω′′i,1, . . . , ω

′′
i,r

}
⊂ Ω;

– there is for each i ∈ 1 . . . l a different name mapping collection Nmi =
{ni,1, . . . , ni,l}, s.t. Topni,j

= Topi and ni,j(x) = xi,j .

The provided definition is well-founded since the various interpretation func-
tions agree upon the interpretation of shared names.

Lemma 38. Given a structure ω̂ s.t. ω̂ = µR(ω, σX,Λ,Ω), a quintuple:

〈ω, ω′i, ω′′i,j , σX, (σ′Y)i〉

s.t. 〈ω′i, (σ′Y)i〉 ∈ Λ and ω′′i,j ∈ Ω, is embedded into ω̂ as repaired enactment.

Now we can finally provide a decision procedure to check whether a non-
deterministic service is repairable using an approach quite similar to one devised
for simple services.

Theorem 52. A consistent and accessible non-deterministic e-service S is re-
pairable w.r.t. a world specificationW using a family of repair RS = {R1, . . . , Rr},
iff the following implication holds:

∧
E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE) ∧
r∧

i=1

(
∆KBR

n (mE , nE,i)
))

∧KBP ∧ τ(W) |=
∨

E∈E

r∨
i=1

(
τnE,i

(W) ∧∆KBC
n (mE , nE,i)

) (5.43)

where mE and nE,i are the name mapping functions for the domain defined for
each effect E and for each repair Ri.

Proof. By contradiction, we assume that the service is repairable but the impli-
cation does not hold. It means that exists at least a structure ω̂ s.t.:

ω̂ |= KBP∧τ(W)∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE) ∧
r∧

i=1

(
∆KBR

n (mE , nE,i)
))

but that, for any E ∈ E and for any i ∈ 1 . . . r, it does not satisfy constraints in:∧
E∈E

r∧
i=1

(
τnE,i

(W) ∧∆KBC
n (mE , nE,i)

)
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Applying the projection function πR
n for every service effect E ∈ E and for every

considered repair Ri ∈ RS , we obtain a set of quintuples of the form:

〈ω, ω′E , ω′′E,i, σX, (σ′Y)E〉

By definition they agree on 4 components out of 5, since they are built upon
shared names (e.g., A, m(P), and so on).

Since for each effect E ∈ E the structure is s.t. ω̂ |= nKBU
mE

, any quadruple
〈ω, ω′E , σX, (σ′Y)E〉 represents a valid service enactment according to Theorem
46. Moreover, since we have assumed that the service is also repairable, a repair
RE∗,i∗ ∈ RS , s.t. the associated final state ω′′i∗ is legal, for some E∗ ∈ E must
exist. So, applying Theorem 50, it follows that the structure ω̂ is also a model
of the knowledge base ∆KBC

n (mE∗ , nE∗,i∗).
On the other hand, since the state ω′′E∗,i∗ is legal, given the hypothesis of

repairability of the service enactment, and it is embedded into ω̂, by Theorem
3, we can conclude that also:

ω̂ |= τnE∗,i∗ (W)

So we have found that ω̂ satisfies at least the constraint set for the pair E∗, i∗,
hence the contradiction.

Now we assume that the service is not repairable despite the fact that the
implication holds. Consequently there must exist at least a world state ω and
an input assignment σX s.t. the resulting state can not be “adjusted” with any
available repair, not matter which non-deterministic effect is selected.

Let ω′E and (σ′Y)E be a possible enactment, assuming that the effect E ∈
E has been non-deterministically chosen, if the service is not repairable, for
each candidate repair Ri ∈ RS at least one of the following condition must be
satisfied:

• the repair is not consistent with the enactment;

• the repaired state is not legal.

Let ω̂ be the structure obtained by the application of function µR to all
candidate repaired states in ΩE =

{
ω′′E,1, . . . , ω

′′
E,r

}
obtained from ω′E using

repair in RS , considering any possible service effect E ∈ E . Since the service is
accessible and we are considering a valid enactment, according to Theorem 45,
the constructed interpretation ω̂ is a model of nKBU

mE
for each E ∈ E .

Now we consider the definition of repair insert and update set, and also of
repaired extension of role and concept names: applying the Corollary 13, we can
also conclude that constraints of ∆KBR

n (mE , nE,i) are satisfied for each E ∈ E
and for each i ∈ 1 . . . r.

We have verified that implication antecedent is satisfied in ω̂ and since, by
the hypothesis, the implication holds, there also must exist at least a term of
the implied disjunction that is satisfied on the same interpretation structure.
This means that:

ω̂ |= τnE∗,i∗ (W) ∧∆KBC
n (mE∗ , nE∗,i∗)

for some E∗, i∗. Now we can apply Theorem 51 obtaining that the state ω′E∗,i∗

is legal according to the world specification, and it is obtained using a repair
Ri∗ that is also consistent with the enactment.
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Remark 29. Is it worth noticing that reasoning about non-deterministic e-
services is not more complex that reasoning about simple ones: in fact, the
devised encoding is essentially linear in the number of service outcome, assumed
as input size specification.

Theorem 53. Given a world specification W and an accessible and consistent
non-deterministic service S, the problem of checking if S is also repairable is in
coNEEXP.

Proof. This claim can be proved using the same argumentation of the proof
of Theorem 33. In fact, the size of implication problem to solve in C2 is still
exponential in the size of the input, since the number of service effects is linearly
bounded by the length of service specification.

5.3 Conclusions

In this chapter we have extended the specification framework, so that we can deal
with more complex e-service behaviors. In particular, we have introduced the
ability to encode a complex service specification that includes multiple possible
behaviors according to two very general paradigms:

• the glass-box specification using the conditional effect specification prim-
itive: despite the implementation details are always hidden to the service
client5, the provider is able to explicitly specify under which conditions
an action is performed regardless the client is actually able to check this
condition;

• the black-box specification using the non-deterministic effect specification
primitive: in this case no details about the decision procedure is required.

Both approaches can be also mixed allowing to specify conditional effects that
are non-deterministically selected by the service provider.

Interestingly, the introduction of these constructs minimally affects the com-
putational complexity of related decision procedures: the working logic is enough
powerful and expressive to cope with these aspects. Also implementation ap-
proaches devised for simple e-service (see Chapter 4) can be without difficulty
extended to this scenario.

5It essentially stems from the abstraction degree induced by the adoption of a knowledge
representation approach.
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Functional Properties

In the previous chapters we have devised a framework that, relying upon De-
scription Logics as constraint/query language and upon a fragment of first-order
logic in which reasoning is decidable, is able to model a community of e-services
that act in an environment describing them in terms of their capabilities to
manage the system state using a suitable update semantics. So far, we have
been mainly interested in the definition of correctness properties: e.g., if a ser-
vice is correctly defined w.r.t. the system specification or is actually activable
from a client. We now go beyond the verification analysis and we present some
complex functional properties that can be formalized using the same approach
and that are interesting in the design of service-oriented solutions.

The analysis of functional properties is closely related to [GMP04, GM05,
GMP06] and [d’A07]: while these ones are essentially static approaches, indeed
very expressive, the present framework is oriented to the analysis of dynamic
features coping explicitly with the world state update resulting from the service
enactment1. On the other hand, the ability to reason locally according to the
CWA enables these approaches to deal also with incomplete domain specifica-
tion, while the present one assumes that such a specification is complete, and
that the service can be partially specified assuming an update repair.

More specifically, we are interested in enriching the framework in order to
support typical tasks such as:

• searching and discovering (matchmaking) an e-service given a parameter-
ized user goal, that essentially models the client’s side commitment and
requirement expressed as properties of the world state;

• searching an e-service replacement in order to replace a faulty service
provider considering, e.g., the state accessibility relation;

• comparing e-service capabilities abstracting w.r.t. user coverage, which
we have pointed out as a foundational property of service-oriented appli-

1As pointed out in Section 2.2.13, DL applications predicating about enactments are con-
sidered as static, while other ones, based on the notion of knowledge base update/repair, are
assumed as dynamic.
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cations. In other words, this task aims to compare e-services considering
only the intensional part of their specification ignoring the extensional one
(that is indeed relevant in the replaceability analysis);

• the specification of e-service template to group different service instances
that differ only w.r.t. extensional specification elements, in order to check
common properties, inherited by the instances, directly on the template.

In the rest, unless differently stated, we always consider non-deterministic
e-services.

6.1 Service Matchmaking

The analysis of available e-services can be performed in an absolute manner
or considering the goal that the service client aims to achieve, as generally
assumed in planning applications. Such a kind of analysis is the foundation
for any discovery lookup method implemented in order to select a suitable,
or preferably the most suitable, available service to achieve a user’s goal (i.e.,
matchmaking).

6.1.1 Execution goals

Generally speaking, a goal is specified as a condition over the domain specifica-
tion language stating the world desired properties as resulting from the execution
of a service. Possibly a goal can be enriched with a condition describing the
properties that hold in the world before the enactment, as a client commitment.

Definition 81 (Execution goal). An execution goal G is defined as triple formed
by:

• a (possibly empty) finite set UG of goal instantiation parameter names;

• a (possibly empty) finite set of simple conditions, expressed using the pa-
rameter names as variables, stating parameter properties and client com-
mitment HG;

• a non-empty finite set of simple conditions, expressed using the parameter
names as variables, stating the properties, in terms of the state of the
world, that the client wants to achieve, as requirement conditions RG.

The syntax and semantics of condition expressions is the same employed for
the definition of invocation preconditions and execution branching, so we omit
them for the sake of brevity.

Definition 82 (Admissible goal specification). An admissible execution goal
specification must be:

non-trivial, which means that there exists at least a legal world state where the
client requirement conditions do not hold for some parameter instantia-
tion;

achievable, which means that there exists at least a legal world state where the
client requirement conditions hold for some parameter instantiation;
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consistent, which means that there exists at least a legal world state where the
client commitment conditions hold for some parameter instantiation.

Remark 30. The language employed in the specification of goal constraints is
the same employed in the specification of service conditions (e.g., preconditions
or branching conditions), so we can easily extend results established so far to
this scenario.

Given a constraint expressed as C = {C1, . . . , Cn}, where Ci is a simple
condition defined over the environment U, we define a knowledge base K̃B

C

adding to axioms of K̃B
V

, instantiated using V = U, adding the following
boolean axioms: ∨

C∈C

∧
c∈C

γ(c)

where γ is the function defined in Eq. 4.1.

Lemma 39. Given a state ω and an assignment σ, a condition C is satisfied
ω using σ iff there exists an interpretation ωC s.t. 〈ω, σ〉 = πV(ωC) and ωC |=
K̃B

C
.

Proof. This is a special case of Theorem 17, considering a simple service SG s.t.:

• the input variables X are the environment of the condition;

• the output variable set is empty (n = 0);

• the condition is taken as invocation precondition constraint P;

• the service effect is the identity transformation.

The previous result can be easily and slightly generalized into the following
useful claims, stating that the proof argumentation essentially relies on embed-
ding relation properties, enforced by mapping/projection:

Corollary 14. Given a state ω and an assignment σ, a condition C is satisfied
ω using σ iff there exists an interpretation ωC s.t. 〈ω, σ〉 is embedded into ωC

and ωC |= K̃B
C
.

Corollary 15. Given a state ω, an assignment σ, and a name mapping function
m, a condition C is satisfied ω using σ iff there exists an interpretation ωC s.t.
〈ω, σ〉 is embedded into ωC according to m and ωC |= K̃B

C
(m).

In the latter case, we compose the axiom schema with the name mapping
function, or more specifically we adopt the following version of the function γ
defined in Eq. 4.1:

γm(〈s,Q(X)〉) ,

{
αp : τm(Q) if s = +
τm(Q) v ⊥ if s = −

(6.1)

being αp a new fresh constant name not appearing elsewhere.
For the sake of brevity, given a goal G we denote as KBH and KBR resp.

the axiom schema K̃B
C

instantiated over conditions in HG and RG, using the
environment UG.

147



CHAPTER 6 FUNCTIONAL PROPERTIES

Theorem 54. Given a goal G and a world specificationW, the goal is consistent
iff the knowledge base KBH ∧ τ(W) is satisfiable.

Proof. Assuming that the goal is consistent, than there must exist a legal world
state ω and a parameter assignment σ s.t. both the world specification con-
straints and client commitment constraints hold in ω given σ. So, applying
Lemma 39, we can build a structure ωH , s.t. ωH |= KBH , but since Theorem
3, using the function µV we can embed the world model into a structure that
is also a model for the τ(W).

Now we assume that the knowledge base is satisfiable: let ωH be a model of
such knowledge base. According to Lemma 39, the pair 〈ω, σ〉 = πV(ωH) is s.t.
the condition hold in ω using σ. Moreover, given Theorem 11, the structure ω
is also embedded into ωH , and since the latter is a model of τ(W), the former
is a legal world state.

Theorem 55. Given a goal G and a world specificationW, the goal is achievable
iff the knowledge base KBR ∧ τ(W) is satisfiable.

Proof. The proof is analogous to Theorem 54.

Theorem 56. Given a goal G and a world specification W, the goal is non-
trivial iff the following implication does not hold:

τ(W) ∧ K̃BV |= KBR

Proof. We assume that the goal is non-trivial, so there exists at least a pair
〈ω, σ〉, s.t. ω is legal world state according to W and σ is consistent parameter
instantiation and client requirement condition R are not satisfied in ω.

According to Theorem 10, we can employ the mapping function µV to build
an interpretation structure ωR s.t. the given world state and assignment are
embedded into it. Moreover the obtained structure is s.t. ωR |= τ(W) ∧ K̃BV

,
so, if the implication is assumed to be satisfied, we can also conclude that
ωR |= KBR, and according to Lemma 39, that requirement condition R also
holds in ω, resulting in a contradiction.

Now we assume that the implication does not hold, but that the goal is triv-
ial. Given the hypothesis, there must exist at least an interpretation structure
ωR s.t. the implication antecedents are satisfied, while the consequent does not
hold. Applying the projection function πV to the given structure, we obtain a
pair 〈ω, σ〉 s.t., according to Theorem 11 and related claims, ω is a legal world
state given W and σ is a consistent assignment. Since we have assumed that
the goal is trivial, we can also conclude that also requirement constraints are
naively satisfied in ω given σ. Hence, according to Lemma 39, we conclude that
ωR |= KBR too, obtaining a contradiction.

The previous claim can be restated as the following:

Corollary 16. Given a goal G and a world specification W, the goal is non-
trivial iff the following formula is satisfiable:

τ(W) ∧ K̃BV ∧ ¬

( ∨
C∈RG

∧
c∈C

γ(c)

)
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Remark 31. Is worth noticing that reasoning about goals is quite similar, given
the present framework, to reasoning about services, also in terms of computa-
tional complexity.

Theorem 57. Given a world specification W and a goal G, the problem of
checking if G is consistent or achievable or non-trivial is in NEXP.

Proof. According to Theorems 54, 55 and Corollary 16 we can reduce the check
of goal properties to the satisfiability of a C2 sentence having a length linear in
the size of the input specification (world and goal). The result follows from the
observation, already used to show previous complexity results, that satisfiability
check problem for this language is solvable non-deterministic exponential time.

Using the previous result, we can, without difficulty, obtain the following
property.

Corollary 17. Given a world specification W and a goal G, the problem of
checking if G is admissible is in NEXP.

6.1.2 Binding schemas

A parameter-less goal is also called ground goal. Generally speaking, in order to
call a service, we need to accordingly assign its input parameters, so given a user
goal (ground or not) we need to express a suitable way to bind service inputs.
W.l.o.g. we can assume that a binding function is provided, which means that
the adequacy of the service to the goal is analyzed w.r.t. this kind of binding.

This is of course a restriction, but removing it we can easily drop into a
hardly non-decidable case since we need to reason over possible functions, which
requires high order quantification primitives that are feasible only in restricted
context (i.e., constraints satisfaction programming). On the other hand, if we
devise a tool to reason about a given binding function, we can always extend it
in order to search in a possible finite function space, as done, e.g., by machine
learning algorithms [Mit97] that aim to select the function that fits observed
data in the more correct way, statistically interpreted, possibly introducing a
so-called language bias. In our framework, we restrict our attention to binding
functions that are expressed by means of access function queries introduced at
page 44. In particular, in the rest, we remove this limitation introducing a
finite and decidable binding schema search strategy: while the decidability is
preserved the computational complexity is dramatically affected.

Definition 83 (Binding schema). Given a domain specification 〈A,P,O〉, a
world specification W, and two sets of variable names X and Y, a binding
schema B is a function that assigns to each Y ∈ Y an access function, w.r.t.
W, parameterized over X.

Definition 84 (Binding schema evaluation). Given a world state ω, an as-
signment σX and a binding schema B for X and Y, the evaluation of B is
an assignment σY s.t. each name Y ∈ Y is assigned to the evaluation of the
corresponding query:

σY(Y ) = B(Y )ω(σX)
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The definition of access function is too weak since it allows for partial func-
tions, so we need to introduce an additional constraint.

Definition 85 (Valid binding schema). Given a world specification W, a bind-
ing schema B is valid iff, for any legal world state and for any input assignment,
the evaluation of B assigns exactly one value to each output variable.

Theorem 58. Given a world specification W, a binding schema B over X and
Y is valid iff the following implication holds:

K̃B
V ∧ τ(W) |=

∧
Y ∈Y

](τ(B(Y )(X))) = 1

where the axiom schema K̃B
V

is instantiated over X.

Proof. Assuming that the implication holds for each assigned variable Y, but
by contradiction that there exists an a variable Y ∈ Y s.t. the query B(Y )(X)
evaluates to B(Y )ω(σX) and ‖B(Y )ω(σX)‖ 6= 1 for some ω and σX. So let ω be
a legal world state and σX be a consistent assignment on it s.t., the evaluation
of the query is empty or contains more than one element.

Since Theorem 3, using the function µV we can embed the world model into
a structure that is surely a model for the τ(W) ∧ K̃B axioms except the newly
introduced ones (K̃B

V\K̃B). In order to prove the claim, we need to show that
also other axioms hold. Since the assignment σX is consistent, each variable X
is mapped to an element of ∆ω, but since Topω̃ = ∆ω, where ω̃ = µV(ω, σX),
we have that:

µV(ω, σX) |= V v Top

Furthermore , since each variable is assigned to only one element, given the
definition of the mapping function:

µV(ω, σX) |= ](V ) = 1

We have proved that µV(ω, σX) is a model of the knowledge base. By hypothesis
the implication holds, so:

µV(ω, σX) |= ](Q(V)) = 1

But according to Theorem 10 we have that ω / σX  ω̃ and applying Theorem
2 we can conclude that:

B(Y )(X)ω/σX = τ(B(Y )(X))ω̃

or, in other words, that:

ω / σX |= ](B(Y )(X)) = 1

Since the definition of query evaluation we have that:

‖B(Y )ω(σX)‖ = 1

contradicting the hypothesis that binding schema is not valid.
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Assuming that B is a valid binding schema, but by contradiction, that the
implication does not hold for some Y ∈ Y, let ω′ be a model of the knowledge
base s.t.:

ω′ 6|= ](τ(B(Y )(X))) = 1

or, in other words, that: ∥∥∥τ(B(Y )(X))ω′
∥∥∥ 6= 1

Applying the πV project function, we obtain a pair 〈ω, σX〉 s.t.

• σ is consistently defined, since ω′ |= X v Top, ](X) = 1 for each X ∈ X;

• according to Theorem 11 and to Theorem 4, since ω′ |= τ(W) ∧ K̃B the
world state ω is legal;

• applying result of Theorem 2 we can conclude also than:

B(Y )(X)ω/σX = τ(B(Y )(X))ω′

Since the binding schema is assumed valid, the evaluation of the query associated
to the variable name Y , provided the pair 〈ω, σ〉, is s.t.:

‖B(Y )ω(σX)‖ = 1

Applying the definition of query evaluation we have that:∥∥∥τ(B(Y )(X))ω′
∥∥∥ = 1

obtaining the contradiction that proves the claim.

Theorem 59. Given a world specification W and a binding schema B, the
problem of checking if the binding schema is valid is in coNEXP.

Proof. In order to solve the problem, we can apply the property shown in The-
orem 58, reducing it to a reasoning task in C2 logics.

Also in this case the encoding is linear in the size of the input: in fact
for each variable assigned in the schema there is a fragment in the implication
consequent formula. So the size of resulting formula is linear in the number of
binding schema queries.

The absolute validity of a binding schema (which means considering every
possible instantiation of input variables) is often a condition to hard to fulfill, but
since we generally have to deal with assignments subject to various constraints,
we can relax such a definition without any significant restriction.

Definition 86 (Valid binding schema w.r.t. a condition). Given a world spec-
ification W, a binding schema B is valid w.r.t. a condition C (expressed on
the same signature) iff, for any legal world state and for any input assignment
consistent w.r.t. the condition, the evaluation of B assigns exactly one value to
each output variable.

We can state also the following claim generalizing Theorem 58 and Corollary
14:
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Corollary 18. Given a world specification W, a binding schema B over X and
Y is valid w.r.t. a condition C iff the following implication holds:

K̃B
V ∧ τ(W) ∧

∨
C∈C

∧
c∈C

γ(c) |=
∧

Y ∈Y

](τ(B(Y )(X))) = 1

where the axiom schema K̃B
V

is instantiated over X.

In the following we enrich such definitions so that we can apply them to a
pair of service and goal.

Definition 87 (Weakly consistent binding schema). Let W be a consistent
world specification, G a consistent user goal, S an accessible service. A valid
binding schema B, w.r.t. user commitments, is weakly consistent for the pair
〈G,S〉 iff there exists a legal world state ω and goal instantiation σU s.t. the user
commitments are satisfied in ω and the service is accessible using the binding
σX = B(ω, σU).

Definition 88 (Consistent binding schema). Let W be a consistent world spec-
ification, G a consistent user goal, S an accessible service. A valid binding
schema B, w.r.t. user commitments, is consistent for the pair 〈G,S〉 iff for
each legal world state ω and goal instantiation σU s.t. the user commitments
are satisfied in ω, the service is accessible using the binding σX = B(ω, σU).

Remark 32. For the sake of clarity we always assume that distinct variable
sets (belonging to service or goal specification) are mutually disjoint.

We introduce the following new axiom schema ∆KBB :

X ≡ B(X)(U)

that given, a binding schema B for a pair goal/service, is instantiated for each
input variable name in X, enforcing the constraints associated to the assignment
of service input variables given the goal instantiation parameters.

Lemma 40. Given a structure ω̂ and a structure ω and an assignment σV s.t.
ω / σV  ω̂, and a valid binding schema B form Y to X s.t. V = Y ∪X and
Y∩X = ∅. The assignment σX is obtained as evaluation of the binding schema
B in ω given σY iff the following condition holds:

ω̂ |= KBV ∧∆KBB

Proof. The claim follow from the definitions of embedding, query evaluation
and binding schema semantics, since for each X ∈ X we have that:

σ(X) = Xω/σV = X ω̃ = [B(X)(UG)]ω̃ = [B(X)(UG)]ω/σV = B(X)ω(σ)

Remark 33. In the following we always consider the embedding relation (and
associated mapping/projection functions µV and πV) w.r.t. the environment
V = XS ∪UG. Moreover, unless it is explicitly denied, we also assume that all
variable alphabets are always mutually disjoint.
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Theorem 60. Given a consistent world specification W, an admissible goal G,
an accessible service S, and a valid binding schema B for XS given UG, it is
weakly consistent for the pair 〈G,S〉 iff the following formula is satisfiable:

τ(W) ∧KBH ∧∆KBB ∧KBP

Proof. We assume that the binding schema is weakly consistent w.r.t. the given
service/goal pair, but that the formula is not consistent. In other words, there
does not exist any structure ω̃ s.t.:

ω̃τ(W) ∧KBH ∧∆KBB |= KBP

Let ω be a legal world state and σU be a goal instantiation s.t. the user commit-
ments are satisfied in ω and S is accessible using the binding schema B: given
the weak consistency assumption such a pair must exist.

Now, we can apply the mapping function µV to the pair 〈ω, σV〉 obtaining
a new interpretation structure ω̃ that embeds such a pair and that, according
to Theorems 10 and 54, is also s.t.:

ω̃ |= τ(W) ∧KBH

Moreover, given the definition of query evaluation, we can also conclude that
for each X ∈ X, we have that:

ω̃ |= X ≡ B(X)(U)

since we have assumed that σX(X) = B(X)ω(σY). We can conclude that ω̃ |=
∆KBB and applying Corollary 3, since we have assumed that the given service
is accessible in ω using σX, also that ω̃ |= KBP . The structure ω̃ is a model of
the given formula that is clearly satisfiable.

We now assume that, despite the formula is consistent, the binding schema
is not weakly consistent for the service/goal pair given the world specification.
It means that there does not exist any legal world state ω and consistent in-
stantiation σU of the goal s.t.:

• the goal user commitments are satisfied in ω;

• the evaluation of the binding schema (that is assumed to be valid) in this
context provides a well-founded assignment σX for service input variables.

Given the hypothesis of non-consistency of the binding schema we assume that
the service S is not accessible in ω using the assignment σX.

Given a model ω̃ of the satisfiable formula (such a model must exist), ac-
cording to Theorems 11 and 54 we can build a pair 〈ω, σV〉 = πV(ω̃) s.t.:

• ω is legal world state w.r.t. the specification W;

• the goal requester commitments are satisfied in ω given the assignment
σU obtained from restricting σV to names is U;

• the variables in X are consistently assigned to a domain element according
to the evaluation of the binding schema (Lemma 40).
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Moreover, applying Theorem 17, since we have assumed that ω̃ |= KBP , we can
conclude that such a service is also accessible in ω using the input assignment
obtained from the evaluation of binding functions. In other words, at least
the obtained pair is s.t. the service is accessible using the assignment obtained
applying the binding schema to the goal instantiation and, hence, such a binding
schema is at least weakly consistent, proving the claim.

Theorem 61. Given a consistent world specification W, an admissible goal G,
an accessible service S, and a valid binding schema B for XS given UG, it is
consistent for the pair 〈G,S〉 iff the following implication hold:

τ(W) ∧KBH ∧∆KBB |= KBP

Proof. We assume that the binding schema is consistently defined w.r.t. the
given service/goal pair, but that the implication does not hold. In other words,
there must exist a structure ω̃ s.t.:

ω̃ |= τ(W) ∧KBH ∧∆KBB

ω̃ 6|= KBP

According to Theorems 11 and 54 we can build a pair ω, σV = πV(ω̃) s.t.:

• ω is legal world state w.r.t. the specification W;

• the goal requester commitments are satisfied in ω given the assignment
σU obtained from restricting σV to names is U;

• the variables in X are consistently assigned to a domain element according
to the evaluation of the binding schema (Lemma 40).

So, given the assumption on the consistency of the binding schema we can
conclude that such a service is also accessible in ω using the input assignment
obtained from the evaluation of binding functions. Consequently, applying The-
orem 17, we can conclude that ω̃ |= KBP , resulting in a contradiction.

We now assume that, despite the implication holds, the binding schema is
not consistently defined for the service/goal pair given the world specification.
It means that there exists a legal world state ω and a consistent instantiation
σU of the goal s.t.:

• the goal user commitments are satisfied in ω;

• the evaluation of the binding schema (that is assumed to be valid) in this
context provides a well-founded assignment σX for service input variables.

Since the hypothesis of non-consistency of the binding schema we can also con-
clude that the service S is not accessible in ω using the assignment σX.

We can apply the mapping function µV to the pair 〈ω, σV〉, obtaining a
new interpretation structure ω̃ that embeds such a pair and that, according to
Theorems 10 and 54, is also s.t.:

ω̃ |= τ(W) ∧KBH

Moreover, given the definition of query evaluation, we can also conclude that
for each X ∈ X, we have that:

ω̃ |= X ≡ B(X)(U)
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since we have assumed that σX(X) = B(X)ω(σY). We can conclude that ω̃ |=
∆KBB and we can check that implication antecedents are satisfied and, since
the implication is assumed to be verified, we can finally conclude that ω̃ |= KBP .
Applying Corollary 3, we can now infer also that the service is accessible in ω
using σX, obtaining a contradiction that proves the claim.

6.1.3 Service/goal adequacy

In the previous sections we have introduced and discussed the basic elements
required to formalize the matchmaking problem. In the following, we are inter-
ested in studying how a service is adequate to achieve a given goal.

Let G be an admissible execution goal, given a valid service S and a con-
sistent binding schema B, we are interested in assessing the adequacy degree of
the service to achieve a world state compatible with the goal requirement start-
ing from a world state s.t. client commitments hold using the binding schema.
According to the quantification on initial and resulting states from the service
execution, we can distinguish various kinds of adequacy notions.

For example, if a service can always surely achieve a given goal, it can be
declared as:

Definition 89 (Strong uniform adequacy). A service S is strongly and uni-
formly adequate to a goal G iff, for each legal world state in which the service
preconditions hold, and for each goal instantiation that is compliant to user com-
mitments, every service enactment obtained applying the binding schema results
in a state where the user requirement conditions hold.

Other degrees of adequacy are the followings:

Definition 90 (Strong non-uniform adequacy). A service S is strongly and
non-uniformly adequate to a goal G iff there exist a legal world state in which
preconditions hold and a goal instantiation that is compliant to user commitment
s.t. every service enactment obtained applying the binding schema results in a
state where user requirement conditions hold.

Definition 91 (Weak uniform adequacy). A service S is weakly and uniformly
adequate to a goal G iff, for each legal world state in which preconditions hold and
for each goal instantiation that is compliant to user commitment, there exists
at least a service enactment obtained applying the binding schema resulting in
a state where user requirement conditions hold.

Definition 92 (Weak non-uniform adequacy). A service S is weakly and non-
uniformly adequate to a goal G iff there exist a legal world state in which precon-
ditions hold and a goal instantiation that is compliant to user commitment s.t.
there exists at least a service enactment obtained applying the binding schema
resulting in a state where user requirement conditions hold.

Roughly speaking, a strong adequacy degree implies that the service can
surely achieve the execution goal, provided that service and goal preconditions
are satisfied. On the other hand, a uniform adequacy degree implies that, every
time service and goal preconditions are satisfied, there exists a suitable service
computation that achieve the goal. The intuition behind this formalization is
reported in Table 6.1.
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Level Description
SU The service always surely achieves the goal

WU The service can always possibly achieve the goal

SNU The service sometime surely achieves the goal

WNU The service can sometime possibly achieve the goal

Table 6.1: Service/goal adequacy levels

Lemma 41. Given an accessible and valid service and an admissible goal, using
a consistent binding schema, the strong goal adequacy implies the corresponding
weak property.

Proof. The claim follows from these observations:

• the world specification is assumed to be consistent, so at least a legal world
state exists;

• the assumption on service accessibility and validity ensures that also a
state suitable for the service activation exists and the service enactment
result is always a legal state;

• the consistency assumption regarding the binding schema also ensures
that always exists a goal instantiation s.t. both user commitments and
activation preconditions hold.

Example 10. Given the services defined in Examples 2 and 3, we consider
the following simple parametric goal G, denoting a citizen that is attempting to
change its own residence to town town2:

U = {u}
H = u u Citizen and not (∃residentIn−.u) u {town2}
R =

{
−residentIn(u, ∃residentIn−.u),+residentIn(u, {town2})

}
The binding schema of input variable of the services is the same in both cases
and it is defined as:

B = {x1(u) = u, x2(u) = town2}

It is worth noticing, that while the service S is strongly and uniformly adequate
to accomplish the user goal, since its preconditions are always satisfied by user’s
commitment and its effects implies the user’s requirements, the service S1 is
adequate but in a non-uniform way, since, if the requestor does not live in town1,
(s)he cannot access the service, even-through, once enacted, the service always
accomplished the required effects.

Now we address the adequacy problem considering a valid non-deterministic
e-service, but we initially ignore the effect repair, for the sake of simplicity. The
case of partially specified services will be addressed in the next section.

156



CHAPTER 6 FUNCTIONAL PROPERTIES

Theorem 62. A consistent, accessible and valid non-deterministic e-service S
is strongly and uniformly adequate to an admissible goal G given a (weakly)
consistent binding schema B w.r.t. a world specification W, iff the following
implication holds:

KBP ∧ τ(W) ∧KBH ∧∆KBB ∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)
|=∧

E∈E
τmE

(W)→ KBR(mE)

where mE is the name mapping function for the domain and the instantiation
variable names related to effect E ∈ E.

Proof. We assume that the implication is verified, but that the given service
is not uniformly and strongly adequate to the goal. In other words, it means
that exists at least a possible legal service enactment resulting into a legal world
state, since the service validity assumption, s.t. the goal requirement constraints
are not satisfied.

Let ω be the initial state and σX and σU be resp. the service input variable
assignment and the goal parameter assignment. Since we are employing the
binding schema B, the assignment to variables in X is functional depending
upon the goal instantiation. The considered enactment is denoted as 〈ω′, σ′Y〉,
while E∗ is the selected effect. Considering also other possible enactments from
the given initial condition, one for each possible service outcomes, employing
the mapping function we can embed all them into a structure ω̂. It is worth
noticing that implication antecedents are satisfied (Theorems 17, 45, Lemma
40, and Corollary 14 applied to goal user commitment constraints), so applying
the implication we can conclude also that:

ω̂ |= KBR(mE∗)

since, given the validity assumption and the fact that ω′ is embedded using
mE∗ into ω̂, and the select effect is legal and hence that ω̂ |= τmE∗ (W) (the
assumption on service validity ensure that such an effect always exists). Now,
applying Corollary 15 from ω̂ to ω′ on R using mE∗ , we conclude that also goal
requirement conditions hold in ω′, resulting in a contradiction.

Now we assume that, despite the service is strongly and uniformly adequate
to the goal, the implication does not hold. Let ω̂ be a structure s.t.:

ω̂ |= KBP ∧ τ(W)∧KBH ∧∆KBB ∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)

but there exists at least an effect E∗ ∈ E s.t.

ω̂ 6|= τmE∗ (W)→ KBR(mE∗)

or, in other words, that:

ω̂ |= τmE∗ (W) ∧ ¬KBR(mE∗)

Applying Theorem 46, we can conclude that the quadruple 〈ω, ω′, σX, σ
′
Y〉, ob-

tained from the structure ω̂ using the projection function πn w.r.t. the name
mapping mE∗ , is a valid enactment of the service form the state ω to the state
ω′ using the input assignment σX. Since the service is assumed valid, applying
Theorem 47 we can also conclude that:
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• the initial and final state are legal w.r.t. W, since they are embedded into
a structure that satisfies both translated constraint sets;

• input assignment depends on the goal instantiation using the binding
schema (Lemma 40);

• goal client commitment constraints are satisfied in the initial state (Corol-
lary 14).

Given the hypothesis of strong and uniform service adequacy, we need also
conclude that in ω′ client requirement constraints are satisfied, and considering
Lemma 32 and Corollary 15, it follows that:

ω̂ |= KBR(mE∗)

From this contradiction follows the claim.

Theorem 63. A consistent, accessible and valid non-deterministic e-service
S is weakly and uniformly adequate to an admissible goal G given a (weakly)
consistent binding schema B w.r.t. a world specification W, iff the following
implication holds:

KBP ∧ τ(W) ∧KBH ∧∆KBB ∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)
|=∨

E∈E
τmE

(W) ∧KBR(mE)

where mE is the name mapping function for the domain and the instantiation
variable names related to effect E ∈ E.

Proof. We assume that the implication is verified, but that the given service
is not uniformly and weakly adequate to the goal. In other words, it means
that exists at least a legal world state and a variable assignment s.t. the user
commitments are satisfied, the service is accessible, and the goal requirement
constraints are not satisfied for any enactment from the given initial invocation
context.

Let ω be the initial state and σX and σU be resp. the service input variable
assignment and the goal parameter assignment. Since we are employing the
binding schema B, the assignment to variables in X is functional depending
upon the goal instantiation. We consider all possible enactment, according to
service outcome specification, and,employing the mapping function, we can em-
bed all them into a structure ω̂. It is worth noticing that implication antecedents
are satisfied (Theorems 17, 45, Lemma 40, and Corollary 14 applied to goal user
commitment constraints), so applying the implication we can conclude also that
at least an effect E∗ ∈ E s.t.:

ω̂ |= τmE∗ (W) ∧KBR(mE∗)

must exist. Now, applying Corollary 15 from ω̂ to ω′ on R using mE∗ , we
conclude that ω′ is a legal world state and also goal requirement conditions hold
in ω′, obtaining a contradiction.
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Now we assume that, despite the service is weakly and uniformly adequate
to the goal, the implication does not hold. Let ω̂ be a structure s.t.:

ω̂ |= KBP ∧ τ(W)∧KBH ∧∆KBB ∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)

but there does not exist any effect E ∈ E s.t.

ω̂ 6|= τmE
(W) ∧KBR(mE)

Applying Theorem 46, we can conclude that the quadruple 〈ω, ω′, σX, σ
′
Y〉, ob-

tained from the structure ω̂ using the projection function πn w.r.t. a name
mapping m, is an enactment of the service form the state ω to the state ω′

using the input assignment σX. Since the service is assumed valid, applying
Theorem 47 we can also conclude that:

• the initial state is legal w.r.t. W;

• at least an effect E∗ leading to a legal final state must exist;

• input assignment depends on the goal instantiation using the binding
schema (Lemma 40);

• goal client commitment constraints are satisfied in the initial state (Corol-
lary 14).

Given the hypothesis of weak and uniform service adequacy, we can also con-
clude that there exists at least an effect leading to a legal world state where also
client requirements are satisfied. W.l.o.g., we can assume E∗ as such an effect.
Considering Lemma 32 and Corollary 15, it follows that

ω̂ |= KBR(mE∗)

or, in other words, given the validity of ω′, that:

ω̂ |= τmE∗ (W) ∧KBR(mE∗)

From this contradiction follows the claim.

Theorem 64. A consistent, accessible and valid non-deterministic e-service S
is strongly and non-uniformly adequate to an admissible goal G given a (weakly)
consistent binding schema B w.r.t. a world specification W, iff the following
formula is satisfiable:

KBP ∧ τ(W) ∧KBH ∧∆KBB ∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)

∧
∧

E∈E

(
τmE

(W)→ KBR(mE)
)

where mE is the name mapping function for the domain and the instantiation
variable names related to effect E ∈ E.
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Proof. We assume that the formula is consistent, but that the given service is
not non-uniformly and strongly adequate to the goal. In other words, it means
that does not exist any legal world state and variable assignment s.t. the user
commitments are satisfied, the service is accessible, and the goal requirement
constraints are satisfied for any legal enactment from the given initial invocation
context.

Let ω̂ be a model of the given knowledge base (it is assumed consistent,
so such a structure must exist). Applying Lemma 31 to each distinct service
effect, we obtain a set of tuples, each representing a possible enactment, possibly
legal, from a state ω using the input assignment σX, according to Theorem 46.
Moreover, given Corollary 14, applied to goal user commitment constraints, and
Lemma 40 we can conclude also that user commitments hold in ω and that such
a service is activated using the binding schema B. Both service and binding
schema are assumed to be valid, so there exists a non-empty set of legal service
effects (which means service effect that given the invocation context lead the
system into a legal world state). Given the hypothesis of non-adequacy of the
pair goal/service, at least a legal effect E∗ ∈ E , s.t. in the final world state goal
requirement constraints do not hold, must exist.

According to Theorem 47, since the implication antecedents are implied by
the given knowledge base, we can also conclude that:

ω̂ |= τmE∗ (W)

and, since such knowledge base is satisfied in ˆomega, also that:

ω̂ |= KBR(mE∗)

Hence, applying Corollary 15 to goal requirement constraints using the mE∗

name mapping function, we can conclude that also effect E∗ achieve them,
contradicting the hypothesis of non-adequacy.

Now we assume that the pair goal/service is strongly non-uniformly adequate
but the given formula is not satisfiable. Let ω be a legal world state and σU be
a goal instantiation assignment s.t.:

• the service is activated using the provided binding schema applied to goal
instantiation assignment;

• the service is accessible given the initial state and input assignment.

Applying the definition of service effect, we can compute a set possible enact-
ment for any given non-deterministic outcome, from the initial state and, using
the mapping function, embed all them into a structure ω̂. Applying Theorems
17, 45, 54, and Lemma 40, we can, without difficulty, conclude that the structure
is s.t.:

ω̂ |= KBP ∧ τ(W)∧KBH ∧∆KBB ∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)

In order to complete the argumentation, we need to show that the remaining
conjunct is also satisfied in ω̂. Considering a non-deterministic effect E ∈ E , if
ω̂ 6|= τmE

(W), we can easily verify that the implication is valid, but according
to Theorem 47 , at least an effect E∗ s.t. ω̂ |= τmE∗ (W) must exist, since
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preconditions hold in ω̂. Since we have assumed that such a pair goal/service is
strongly adequate, given the enforcement of effect E∗ by S lead to a legal world
state where goal requirement constraint are satisfied, applying Corollary 15, we
obtain that also ω̂ |= KBR(mE∗) and, hence, that:

ω̂ |=
∧

E∈E

(
τmE

(W)→ KBR(mE)
)

proving the claim.

Theorem 65. A consistent, accessible and valid non-deterministic e-service S
is weakly and non-uniformly adequate to an admissible goal G given a (weakly)
consistent binding schema B w.r.t. a world specification W, iff the following
formula is satisfiable:

KBP ∧ τ(W) ∧KBH ∧∆KBB ∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)

∧

(∨
E∈E

τmE
(W) ∧KBR(mE)

)

where mE is the name mapping function for the domain and the instantiation
variable names related to effect E ∈ E.

Proof. We assume that the formula is consistent, but that the given service is
not non-uniformly and weakly adequate to the goal. In other words, it means
that does not exist any legal world state and variable assignment s.t. the user
commitments are satisfied, the service is accessible, and the goal requirement
constraints are satisfied for at least an enactment from the given initial invoca-
tion context.

Let ω̂ be a model of the given knowledge base (it is assumed consistent,
so such a structure must exist). Applying Lemma 31 to each distinct service
effect, we obtain a set of tuples, each representing a possible enactment, possibly
legal, from a state ω using the input assignment σX, according to Theorem 46.
Moreover, given Corollary 14, applied to goal user commitment constraints,
and Lemma 40 we can conclude also that user commitments hold in ω and
that such a service is activated using the binding schema B. Both service and
binding schema are assumed to be valid, so there exists a non-empty set of legal
service effects (which means service effect that given the invocation context lead
the system into a legal world state). Given the hypothesis of non-adequacy of
the pair goal/service, for each legal effect E ∈ E , in the final world state goal
requirement constraints must not hold. Since the service is valid at least a legal
effect must exist.

According to Theorem 47, since the implication antecedents are implied by
the given knowledge base, we can also conclude that:

ω̂ |= τmE
(W)

for any legal service outcome. Since such knowledge base is satisfied in ˆomega,
there must exist at least a legal effect E∗ s.t.:

ω̂ |= KBR(mE∗)
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Hence, applying Corollary 15 to goal requirement constraints using the mE∗

name mapping function, we can conclude that at least the effect E∗ achieve the
goal, contradicting the hypothesis of non-adequacy.

Now we assume that the pair goal/service is weakly non-uniformly adequate
but the given formula is not satisfiable. Let ω be a legal world state and σU be
a goal instantiation assignment s.t.:

• the service is activated using the provided binding schema applied to goal
instantiation assignment;

• the service is accessible given the initial state and input assignment.

Applying the definition of service effect, we can compute a set possible enact-
ment for each given non-deterministic outcome, from the initial state and, using
the mapping function, embed all them into a structure ω̂. Applying Theorems
17, 45, 54, and Lemma 40, we can easily conclude that the structure is s.t.:

ω̂ |= KBP ∧ τ(W)∧KBH ∧∆KBB ∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)

In order to complete the proof, we need to show that the remaining conjunct
is also satisfied in ω̂. According to Theorem 47, at least a legal effect E∗ s.t.
ω̂ |= τmE∗ (W) must exist, since preconditions hold in ω̂. Since we have also
assumed that such a pair goal/service is weakly adequate, there must exist at
least a legal effect whose enforcement by S lead to a legal world state where
goal requirement constraint are satisfied. W.l.o.g., we can assume E∗ as such
an effect, so applying Corollary 15, we can conclude that also ω̂ |= KBR(mE∗)
and, hence, that:

ω̂ |=
∨

E∈E
τmE

(W) ∧KBR(mE)

proving the claim.

Remark 34. In case of strongly consistent binding schema the axioms KBP

are entailed according Theorem 61 from other axioms in the formula, so they
can be omitted from the claim statement.

Theorem 66. Given a world specification W, an accessible and consistent ser-
vice S, a consistent goal G and a consistent binding schema B for the pair,
the problem of checking if S is uniformly adequate to achieve G using B is in
coNEXP, while the problem of if S is non-uniformly adequate to achieve G using
B is in NEXP.

Proof. As done for other cases analyzed in this work, we can solve the problem
applying the logical properties proved in previous theorems reducing the ver-
ification of uniform adequacy to an implication decision in C2 logics, and the
verification of non-uniform adequacy to a satisfiability decision C2. Like other
reductions it is also linear in the size of the input (number and length of axioms,
preconditions, effects specifications, goal constraints and binding queries).

Remark 35. While the verification of uniform adequacy seems, since we have
not provided any lower bound in terms complexity class, to be more complex
than the verification of the non-uniform property, the verification of strong and
weak adequacy properties seem to belong to the same complexity class.
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6.1.4 Incompleteness and service/goal adequacy

In the previous section we have analyzed the problem of verifying the adequacy
of an e-service to perform a user task described as a goal in the case of com-
plete effect specification. Thus, in order to complete the discussion, we need to
introduce also the repair step into the service effect evaluation.

As defined is Chapter 4, the repair strategy relies upon a minimal-change
semantics in terms of model changes: in other words, we are assuming that
always the “simplest” repair option is selected. While this aspect has not played
a significant role devising previous results, it turns to be a critical point in the
analysis of functional properties and, in particular, of the adequacy of a service
to achieve a goal. Roughly speaking, in this scenario we do not only need to show
that the service can accomplish the required task, but also that the repair does
not interfere with its side-effects. In order to show that such a property hold,
we need to simulate the repair selection procedure that means that generally a
goal is achieved iff its requirement constraints hold in the world state obtained
by the minimal-change effective repair.

In the rest, given a repair search space RS we introduce the following nota-
tion for denoting some interesting subsets:

Rk
S , {R ∈ RS | ‖R‖ = k}

R̂k
S ,

j<k⋃
j=0

Rj
S

while s , maxR∈RS
‖R‖. We also define the formula θE,R,W,RS

to denote the
following material implication finitely quantified over service effects and repairs
grouped by their size:

θE,R,W,RS
,
∧

E∈E

s∧
k=0

∧
R∈Rk

S

τnE,R
(W) ∧∆KBC

n (mE , nE,R)

∧
∧

R′∈R̂k
S

¬
(
τnE,R′ (W) ∧∆KBC

n (mE , nE,R′)
)
→ KBR(nE,R)

(6.2)

Finally, we also introduce an analogous formula ηE,R,W,RS
to denote the fol-

lowing conjunction finitely quantified over service effects and repairs grouped
by their size:

ηE,R,W,RS
,
∨

E∈E

s∨
k=0

∨
R∈Rk

S

τnE,R
(W) ∧∆KBC

n (mE , nE,R)

∧
∧

R′∈R̂k
S

¬
(
τnE,R′ (W) ∧∆KBC

n (mE , nE,R′)
)
∧KBR(nE,R)

(6.3)

Remark 36. We point out that the repair strategy has been devised in order to
allow the employment of partially specified services, since it is able to adjust such
a specification consistently w.r.t. the domain constraints according to a sort of
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minimal-change semantics. But, on the other hand, this approach is completely
unaware of user’s goal since it keeps into account only service and domain spec-
ification, which means that the repair strategy could potently interfere with the
adequacy of a (under-specified) service to achieve a goal.

In order to solve the adequacy checking problem, as in the other cases, we
devise a feasible encoding in terms of logical inference.

Theorem 67. A consistent, accessible and repairable non-deterministic e-service
S is strongly and uniformly adequate to an admissible goal G given a (weakly)
consistent binding schema B w.r.t. a world specification W and a normal repair
family RS, iff the following implication holds:

∧
E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE) ∧
∧

R∈RS

∆KBR
n (mE , nE,R)

)
∧KBP ∧ τ(W) ∧KBH ∧∆KBB |= θE,R,W,RS

(6.4)

where mE and nE,R are the name mapping functions for the domain and the
instantiation variable names defined for each effect E ∈ E and for each repair
R ∈ RS.

Proof. We initially assume that the pair service/goal is strongly and uniformly
adequate given the world specification W, the binding schema B and the repair
family RS , but that the given implication does not hold. In other words, there
exists a structure ω̂ s.t. the implication antecedents are satisfied in ω̂ but not
the implication consequent, or, in other words, that:

ω̂ 6|= θE,R,W,RS

Applying the projection function πR
n to each service effect E ∈ E and to each

considered repair R ∈ RS , we obtain a set of quintuples of the form:

〈ω, ω′E , ω′′E,R, σX, (σ′Y)E〉

By definition they agree on 4 components out of 5, since they are built upon
shared names (e.g., A, m(P), and so on).

Since, for each effect E ∈ E the structure is s.t. ω̂ |= nKBU
mE

, any quadru-
ple 〈ω, ω′E , σX, (σ′Y)E〉 represents a valid service enactment by Theorem 46 and,
since the service is assumed repairable, applying Theorem 52, we can also con-
clude that:

• the initial and final state are legal w.r.t. W, since they are embedded into
a structure that satisfies both translated constraint sets;

• input assignment depends on the goal instantiation using the binding
schema (Lemma 40);

• goal client commitment constraints are satisfied in the initial state (Corol-
lary 14);

• for every possible service invocation always exists at least pair effect/repair
having the repair drawn from RS , that leads the system to a new legal
state w.r.t. W.
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According to the definition of repair strategy (see Figure 4.5), the selected repair
is always the minimum w.r.t. size, so let E∗ be the considered repairable effect,
let R∗ be the minimal-size repair that allows a consistent enactment.

So, applying Theorem 50, it follows that the structure ω̂ is also a model of
the knowledge base ∆KBC

n (mE∗ , nE∗,R∗). On the other hand, since the state
ω′′E∗,R∗ is legal, given the hypothesis of repairability of the service enactment,
and it is embedded into ω̂, by Theorem 3, we can conclude that also:

ω̂ |= τnE∗,R∗ (W)

But, since R∗ is the minimal-size repair having such a property given E∗, we
can also conclude that:

ω̂ 6|= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)

for every R′ ∈ R̂k
S , where k = ‖R∗‖.

Given the hypothesis of strong and uniform service adequacy, we need also
conclude that in ω′′E∗,R∗ client requirement constraints are satisfied, and, apply-
ing Lemma 32 and Corollary 15, we can conclude that:

ω̂ |= KBR(nE∗,R∗)

In other words, we have shown that:

ω̂ |= τnE∗,R∗ (W) ∧∆KBC
n (mE∗ , nE∗,R∗)

∧
∧

R′∈R̂k
S

¬
(
τnE∗,R′ (W) ∧∆KBC

n (mE∗ , nE∗,R′)
)
∧KBR(nE∗,R∗)

where k = ‖R∗‖. For any other repair R, given the effect E∗, we have that at
least one of the following conditions hold:

• the repair is not effective and the obtained state is not legal (ω̂ 6|= KBR(nE∗,R);

• the repair is not consistent (ω̂ 6|= ∆KBC
n (mE∗ , nE∗,R));

• the repair is effective and consistent, but its size is greater than ‖R∗‖.

It means that, for each repairable effect E∗ ∈ E , the corresponding material
implication in θE,R,W,RS

holds. Moreover, if an effect E is not repairable, there
does not exist any repair in the given family such that it is consistent and it
leads the system to a legal state, hence the material implication antecedents are
never satisfied, so the implication holds. We have shown that for every E ∈ E
the structure ω̂ satisfies the material implication, or, in other words, that:

ω̂ |=
∧

E∈E

s∧
k=0

∧
R∈Rk

S

τnE,R
(W) ∧∆KBC

n (mE , nE,R)

∧
∧

R′∈R̂k
S

¬
(
τnE,R′ (W) ∧∆KBC

n (mE , nE,R′)
)
→ KBR(nE,R)

From this contradiction we prove the first part of the theorem.
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Now assume that the implication is satisfied, but the pair goal/service is not
strongly and uniformly adequate given the binding schema, the repair family
and world constraint. It means that there is at least an enactment where it
is possible to select a repairable effect E∗ and the corresponding repair R∗ s.t.
the final state ω∗ is legal but does not enforce client requirements, despite the
initial state was consistent with client commitments.

Let ω be the initial state and σX and σU be resp. the service input variable
assignment and the goal parameter assignment. Since we are employing the
binding schema B, the assignment to variables in X is functional depending
upon the goal instantiation.

Considering also other possible enactments from the given initial condition,
one for each possible service outcomes, and any repair R ∈ RS , employing the
mapping function µR we can embed all them into a structure ω̂.

Since the service is accessible and we are considering a valid enactment,
according to Theorem 45, the constructed interpretation ω̂ is a model of nKBU

mE

for every E ∈ E . Now we consider the definition of repair insert and update
set, and also of repaired extension of role and concept names: applying the
Corollary 13, we can also conclude that constraints of ∆KBR

n (mE , nE,R) are
satisfied for every E ∈ E and for every repair R ∈ RS . Moreover, since we are
assuming also that the binding schema is enforced and that user commitment
constraints are satisfied in ω, so applying Corollary 14 and Lemma 40, we can,
without difficulty, check that implication antecedents are satisfied.

Since we have assumed that the implication holds, we can conclude that:

ω̂ |=
∧

E∈E

s∧
k=0

∧
R∈Rk

S

τnE,R
(W) ∧∆KBC

n (mE , nE,R)

∧
∧

R′∈R̂k
S

¬
(
τnE,R′ (W) ∧∆KBC

n (mE , nE,R′)
)
→ KBR(nE,R)

Given an effect E∗ and a repair R∗, s.t. they lead the system to legal state
without enforcing user request, according to the definition of repairable service
and Theorem 52, whose implication antecedents in Eq. 5.43 are subsumed by
antecedents of the implication in Eq. 6.4, we can conclude that:

ω̂ |= τnE∗,R∗ (W) ∧∆KBC
n (mE∗ , nE∗,R∗)

Since Lemma 21, the selected repair is also the minimal-size repair that is able
to enforce domain constraint upon service effects without retracting them. In
other words, for any other repair R′ s.t. ‖R′‖ < ‖R∗‖, we have that:

ω̂ 6|= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)

It means that antecedents of material implication in θE,R,W,RS
are satisfied for

the effect E∗ and the repair R∗, hence applying the implication we can also
conclude that:

ω̂ |= KBR(nE∗,R∗)

Now, applying Corollary 15 from ω̂ to ω∗ on R using nE∗,R∗ , we conclude that
also goal requirement conditions hold in ω∗, obtaining a contradiction.
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Theorem 68. A consistent, accessible and repairable non-deterministic e-service
S is weakly and uniformly adequate to an admissible goal G given a (weakly)
consistent binding schema B w.r.t. a world specification W and a normal repair
family RS, iff the following implication holds:

∧
E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE) ∧
∧

R∈RS

∆KBR
n (mE , nE,R)

)
∧KBP ∧ τ(W) ∧KBH ∧∆KBB |= ηE,R,W,RS

(6.5)

where mE and nE,R are the name mapping functions for the domain and the
instantiation variable names defined for every effect E ∈ E and for every repair
R ∈ RS.

Proof. We initially assume that the pair service/goal is weakly and uniformly
adequate given the world specification W, the binding schema B and the repair
family RS , but that the given implication does not hold. In other words, there
exists a structure ω̂ s.t. the implication antecedents are satisfied in ω̂ but not
the implication consequent, or, in other words, that:

ω̂ 6|= ηE,R,W,RS

As in the previous claim, we can apply the projection function πR
n for every

service effect E ∈ E and for every considered repair R ∈ RS in order to obtain
a set of quintuples of the form:

〈ω, ω′E , ω′′E,R, σX, (σ′Y)E〉

By definition they agree on 4 components out of 5, since they are built upon
shared names (e.g., A, m(P), and so on).

Since, for every effect E ∈ E the structure is s.t. ω̂ |= nKBU
mE

, any quadruple
〈ω, ω′E , σX, (σ′Y)E〉 represents a valid service enactment by Theorem 46 and since
the service is assumed repairable, applying Theorem 52 we can also conclude
that:

• the initial and final state are legal w.r.t. W, since they are embedded into
a structure that satisfies both translated constraint sets;

• input assignment depends on the goal instantiation using the binding
schema (Lemma 40);

• goal client commitment constraints are satisfied in the initial state (Corol-
lary 14);

• for every possible service invocation always exists at least pair effect/repair
having the repair drawn from RS , that leads the system to a new legal
state w.r.t. W.

Given the hypothesis of weak and uniform service adequacy (even keeping
into account the repair) we can conclude that must exist a final state ω′′E∗,R∗

where client requirement constraints are satisfied or, in other terms, considering
Lemma 32 and Corollary 15, that:

ω̂ |= KBR(nE∗,R∗)
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Moreover, according to the definition of repair strategy (see Figure 4.5), if the
effect E∗ is repairable using R∗, it must be the minimal-size repair that allows a
consistent enactment using such an effect. So, applying Theorem 50, we obtain
that the structure ω̂ is also a model of the knowledge base ∆KBC

n (mE∗ , nE∗,R∗).
On the other hand, since the state ω′′E∗,R∗ is legal, given the hypothesis of
repairability of the service enactment, and it is embedded into ω̂, by Theorem
3, we can conclude that also:

ω̂ |= τnE∗,R∗ (W)

But, since R∗ is the minimal-size repair having such a property given E∗, we
can also conclude that:

ω̂ 6|= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)

for every R′ ∈ R̂k
S , where k = ‖R∗‖.

In other words, we have shown that:

ω̂ |= τnE∗,R∗ (W) ∧∆KBC
n (mE∗ , nE∗,R∗)

∧
∧

R′∈R̂k
S

¬
(
τnE∗,R′ (W) ∧∆KBC

n (mE∗ , nE∗,R′)
)
∧KBR(nE∗,R∗)

where k = ‖R∗‖. For any other repair R, given the effect E∗, we have that at
least one of the following conditions hold:

• the repair is not effective and the obtained state is not legal (ω̂ 6|= KBR(nE∗,R);

• the repair is not consistent (ω̂ 6|= ∆KBC
n (mE∗ , nE∗,R));

• the repair is effective and consistent, but its size is greater than ‖R∗‖.

So we have proved that there exists at least a conjunct in ηE,R,W,RS
that is

satisfied in ω̂. From this contradiction we prove the first part of the theorem.
Now assume that the implication is satisfied, but the pair goal/service is not

weakly and uniformly adequate given the binding schema, the repair family and
world constraint. It means that there is at least an enactment where it is not
possible to select a repairable effect E∗ and an effective repair R∗ s.t. the final
state ω′′E∗,R∗ is legal and enforces client requirements, despite the initial state
was consistent with client commitments.

Let ω be the initial state and σX and σU be resp. the service input variable
assignment and the goal parameter assignment. Since we are employing the
binding schema B, the assignment to variables in X is functional depending
upon the goal instantiation.

Considering also other possible enactments from the given initial condition,
one for each possible service outcomes, and any repair R ∈ RS , employing the
mapping function µR we can embed all them into a structure ω̂.

Since the service is accessible and we are considering a valid enactment,
according to Theorem 45, the constructed interpretation ω̂ is a model of nKBU

mE

for every E ∈ E . Now we consider the definition of repair insert and update set,
and also of repaired extension of role and concept names: applying the Corollary
13, we can also conclude that constraints of ∆KBR

n (mE , nE,R) are satisfied for
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every E ∈ E and for every repair R ∈ RS . Moreover, since we are assuming also
that the binding schema is enforced and that user commitment constraints are
satisfied in ω, so applying Corollary 14 and Lemma 40, we can easily check that
implication antecedents are satisfied.

Since we have assumed that the implication holds, we can conclude that:

ω̂ |=
∨

E∈E

s∨
k=0

∨
R∈Rk

S

τnE,R
(W) ∧∆KBC

n (mE , nE,R)

∧
∧

R′∈R̂k
S

¬
(
τnE,R′ (W) ∧∆KBC

n (mE , nE,R′)
)
∧KBR(nE,R)

Let E∗ and R∗ be a pair s.t. the corresponding conjunct in the previous equation
is satisfied in ω̂. According to Theorem 3, since:

ω̂ |= τnE∗,R∗ (W) ∧∆KBC
n (mE , nE,R)

and the fact that the state ω′′E∗,R∗ is embedded into ω̂, we can conclude that
the latter is a legal world state, hence the enactment is admissible. Moreover,
since for any other repair R′ s.t. R′ ∈ R̂k

S , where K = ‖R∗‖, we have that:

ω̂ 6|= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)

and we can also conclude that R∗ must be one of minimal-size repair in RS that
can be actually applied to the effect E∗. Otherwise, the algorithm in Figure 4.5
had selected another consistent repair R′ s.t. ‖R′‖ < ‖R∗‖ and ωE∗,R′ is legal
world state w.r.t. W instead of R∗, and according to Theorems 3 and 50, we
have obtained that:

ω̂ |= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)

We have, hence, shown that the effect E∗ combined with the repair R∗ can
achieve a legal world state. But since the conjunct is satisfied in ω̂ we can also
conclude that:

ω̂ |= KBR(mE∗,R∗)

Now, applying Corollary 15 from ω̂ to ω′′E∗,R∗ on R using nE∗,R∗ , we conclude
that also goal requirement conditions hold in ω′′E∗,R∗ , obtaining a contradiction
from which follows the claim.

Theorem 69. A consistent, accessible and repairable non-deterministic e-service
S is strongly and non-uniformly adequate to an admissible goal G given a (weakly)
consistent binding schema B w.r.t. a world specification W and a normal repair
family RS, iff the following formula is satisfiable:

∧
E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE) ∧
∧

R∈RS

∆KBR
n (mE , nE,R)

)
∧KBP ∧ τ(W) ∧KBH ∧∆KBB ∧ θE,R,W,RS

(6.6)

where mE and nE,R are the name mapping functions for the domain and the
instantiation variable names defined for every effect E ∈ E and for every repair
R ∈ RS.
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Proof. We assume that the formula is consistent, but that the given service is
not non-uniformly and strongly adequate to the goal. In other words, it means
that does not exist any legal world state and variable assignment s.t. the user
commitments are satisfied, the service is accessible, and the goal requirement
constraints are satisfied for every legal enactment from the given initial invoca-
tion context, applying the adequate (minimal) repair according to algorithm in
Figure 4.5.

Let ω̂ be a model of the formula in Eq. 6.6 (it is assumed consistent, so such
a structure must exist). Applying Lemma 35 for every distinct service effect
E ∈ E and for every repair R ∈ RS , we obtain a set of tuples, each representing
a possible enactment, possibly legal, from a state ω using the input assignment
σX, according to Theorem 51. In fact, applying the projection function πR

n for
every service effect E ∈ E and for every considered repair R ∈ RS we obtain a
set of quintuples of the form:

〈ω, ω′E , ω′′E,R, σX, (σ′Y)E〉

By definition they agree on 4 components out of 5, since they are built upon
shared names (e.g., A, m(P), and so on). Since, for every effect E ∈ E the struc-
ture is s.t. ω̂ |= nKBU

mE
, any quadruple 〈ω, ω′E , σX, (σ′Y)E〉 represents a valid

service enactment by Theorem 46 and since the service is assumed repairable,
applying Theorem 52 we can also conclude that:

• the initial and final state are legal w.r.t. W, since they are embedded into
a structure that satisfies both translated constraint sets;

• input assignment depends on the goal instantiation using the binding
schema (Lemma 40);

• goal client commitment constraints are satisfied in the initial state (Corol-
lary 14);

• for every possible service invocation always exists at least pair effect/repair
having the repair drawn from RS , that leads the system to a new legal
state w.r.t. W.

Moreover, since such a service is activated using the binding schema B and bind-
ing schema is assumed to be valid, while the service is assumed to be repairable,
there must exist a non-empty set of legal service outcomes (which means service
effect that given the invocation context lead the system into a legal world state
possibly applying a repair in RS).

Given the hypothesis of non-adequacy of the pair goal/service, must exist
at least an effect E∗ ∈ E and a repair R∗ ∈ RS , s.t. R∗ is possibly selected
as minimal repair in order to enforce world constraint W in the state resulting
from the application of the given effect and in such repaired final world state
goal requirement constraints do not hold. According to the definition of re-
pairable service and Theorem 52, whose implication antecedents in Eq. 5.43 are
subsumed by formula in Eq. 6.6, we can conclude that:

ω̂ |= τnE∗,R∗ (W) ∧∆KBC
n (mE∗ , nE∗,R∗)

Since Lemma 21, the selected repair is also the minimal-size repair that is able
to enforce domain constraint upon service effects without retracting them. In
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other words, for any other repair R′ s.t. ‖R′‖ < ‖R∗‖, it follows that:

ω̂ 6|= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)

It means that antecedents of material implication in θE,R,W,RS
are satisfied for

the effect E∗ and the repair R∗, hence applying the implication we can also
conclude that:

ω̂ |= KBR(nE∗,R∗)

Now, applying Corollary 15 from ω̂ to ω∗ on R using nE∗,R∗ , we conclude that
also goal requirement conditions hold in ω∗, obtaining a contradiction.

Now we assume that the pair goal/service is strongly and non-uniformly
adequate but the given formula is not satisfiable. Let ω be a legal world state
and σU be a goal instantiation assignment s.t.:

• the service is activated using the provided binding schema applied to goal
instantiation assignment;

• the service is accessible given the initial state and input assignment.

Applying the definition of service effect, we can compute a set possible en-
actment for every given non-deterministic outcome and repair in the provided
family, from the initial state and using the mapping function embed all them
into a structure ω̂.

Since the service is accessible and we are considering a valid enactment,
according to Theorem 45, the constructed interpretation ω̂ is a model of nKBU

mE

for every E ∈ E . Now we consider the definition of repair insert and update set,
and also of repaired extension of role and concept names: applying the Corollary
13, we can also conclude that constraints of ∆KBR

n (mE , nE,R) are satisfied for
every E ∈ E and for every repair R ∈ RS .

Applying Theorems 17, 50, 54, and Lemma 40, we can, without difficulty,
conclude that the structure is s.t.:

ω̂ |= KBP ∧ τ(W) ∧KBH ∧∆KBB

∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE) ∧
∧

R∈RS

∆KBR
n (mE , nE,R)

)

In order to complete the argumentation, we need to show that the remaining
conjunct is also satisfied in ω̂.

According to the definition of repair strategy (see Figure 4.5), the selected
repair is always the minimum w.r.t. size, so let E∗ be the considered repairable
effect, let R∗ be the minimal-size repair that allows a consistent enactment.
So, applying Theorem 50, if follows that the structure ω̂ is also a model of
the knowledge base ∆KBC

n (mE∗ , nE∗,R∗). On the other hand, since the state
ω′′E∗,R∗ is legal, given the hypothesis of repairability of the service enactment,
and it is embedded into ω̂, by Theorem 3, we can conclude that also:

ω̂ |= τnE∗,R∗ (W)

But, since R∗ is the minimal-size repair having such a property given E∗, we
can also conclude that:

ω̂ 6|= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)
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for every R′ ∈ R̂k
S , where k = ‖R∗‖.

Given the hypothesis of strong and non-uniform service adequacy we need
also conclude that in ω′′E∗,R∗ client requirement constraints are satisfied, and we
obtain that:

ω̂ |= KBR(nE∗,R∗)

considering Lemma 32 and Corollary 15, In other words, we have shown that:

ω̂ |= τnE∗,R∗ (W) ∧∆KBC
n (mE∗ , nE∗,R∗)

∧
∧

R′∈R̂k
S

¬
(
τnE∗,R′ (W) ∧∆KBC

n (mE∗ , nE∗,R′)
)
∧KBR(nE∗,R∗)

where k = ‖R∗‖. For any other repair R, given the effect E∗, we have that at
least one of the following conditions hold:

• the repair is not effective and the obtained state is not legal (ω̂ 6|= KBR(nE∗,R);

• the repair is not consistent (ω̂ 6|= ∆KBC
n (mE∗ , nE∗,R));

• the repair is effective and consistent, but its size is greater than ‖R∗‖.

It means that for every repairable effect E∗ ∈ E , the corresponding material
implication in θE,R,W,RS

holds. Moreover, if an effect E is not repairable, there
does not exist any repair in the given family such that it is consistent and it
leads the system to a legal state, hence the material implication antecedents are
never satisfied, so the implication holds. We have shown that for every E ∈ E
the structure ω̂ satisfies the material implication, or, in other words, that:

ω̂ |=
∧

E∈E

s∧
k=0

∧
R∈Rk

S

τnE,R
(W) ∧∆KBC

n (mE , nE,R)

∧
∧

R′∈R̂k
S

¬
(
τnE,R′ (W) ∧∆KBC

n (mE , nE,R′)
)
→ KBR(nE,R)

From this contradiction we prove the second part of the theorem.

Theorem 70. A consistent, accessible and repairable non-deterministic e-service
S is weakly and non-uniformly adequate to an admissible goal G given a (weakly)
consistent binding schema B w.r.t. a world specification W and a normal repair
family RS, iff the following knowledge base is satisfiable:(

∆KBI
n(TopmE

,mE) ∧∆KBU
c (mE) ∧

∧
R∈RS

∆KBR
n (mE , nE,R)

)
∧KBP ∧ τ(W) ∧KBH ∧∆KBB ∧ ηE,R,W,RS

(6.7)

where mE and nE,R are the name mapping functions for the domain and the
instantiation variable names defined for every effect E ∈ E and for every repair
R ∈ RS.

Proof. We assume that the formula is consistent, but that the given service is
not non-uniformly and weakly adequate to the goal. In other words, it means
that does not exist any legal world state and variable assignment s.t. the user
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commitments are satisfied, the service is accessible, and the goal requirement
constraints are satisfied in at least legal enactment from the given initial invoca-
tion context, applying the adequate (minimal) repair according to the proposed
repair strategy.

As in the previous proof, let ω̂ be a model of the formula in Eq. 6.7 (it is
assumed consistent, so such a structure must exist). Applying Lemma 35 for
every distinct service effect E ∈ E and for every repair R ∈ RS , we obtain a set
of tuples, each representing a possible enactment, possibly legal, from a state ω
using the input assignment σX, according to Theorem 51. In fact, applying the
projection function πR

n for every service effect E ∈ E and for every considered
repair R ∈ RS , we obtain a set of quintuples of the form:

〈ω, ω′E , ω′′E,R, σX, (σ′Y)E〉

By definition they agree on 4 components out of 5, since they are built upon
shared names (e.g., A, m(P), and so on). Since, for every effect E ∈ E the struc-
ture is s.t. ω̂ |= nKBU

mE
, any quadruple 〈ω, ω′E , σX, (σ′Y)E〉 represents a valid

service enactment by Theorem 46 and since the service is assumed repairable,
applying Theorem 52 we can also conclude that:

• the initial and final state are legal w.r.t. W, since they are embedded into
a structure that satisfies both translated constraint sets;

• input assignment depends on the goal instantiation using the binding
schema (Lemma 40);

• goal client commitment constraints are satisfied in the initial state (Corol-
lary 14);

• for every possible service invocation always exists at least pair effect/repair
having the repair drawn from RS , that leads the system to a new legal
state w.r.t. W.

Moreover, since such a service is activated using the binding schema B and bind-
ing schema is assumed to be valid, while the service is assumed to be repairable,
there must exist a non-empty set of legal service outcomes (which means service
effect that given the invocation context lead the system into a legal world state
possibly applying a repair in RS).

Since we have assumed that the formula holds in ω̂, we can conclude that:

ω̂ |=
∨

E∈E

s∨
k=0

∨
R∈Rk

S

τnE,R
(W) ∧∆KBC

n (mE , nE,R)

∧
∧

R′∈R̂k
S

¬
(
τnE,R′ (W) ∧∆KBC

n (mE , nE,R′)
)
∧KBR(nE,R)

Let E∗ and R∗ be a pair s.t. the corresponding conjunct in the previous equation
is satisfied in ω̂. According to Theorem 3, since:

ω̂ |= τnE∗,R∗ (W) ∧∆KBC
n (mE , nE,R)

and the fact that the state ω′′E∗,R∗ is embedded into ω̂, we can conclude that
the latter is a legal world state, hence the enactment is admissible. Moreover,
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since for any other repair R′ s.t. R′ ∈ R̂k
S , where K = ‖R∗‖, we have that:

ω̂ 6|= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)

and, hence, we conclude that R∗ must be one of minimal-size repair in RS that
can be actually applied to the effect E∗. Otherwise, the repair algorithm had
selected another consistent repair R′ s.t. ‖R′‖ < ‖R∗‖ and ωE∗,R′ is legal world
state w.r.t. W instead of R∗, and according to Theorems 3 and 50, we have
obtained that:

ω̂ |= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)

We have, hence, shown that the effect E∗ combined with the repair R∗ can
achieve a legal world state. But since the conjunct is satisfied in ω̂ we can also
conclude that:

ω̂ |= KBR(mE∗,R∗)

Now, applying Corollary 15 from ω̂ to ω′′E∗,R∗ on R using nE∗,R∗ , we conclude
that also goal requirement conditions hold in ω′′E∗,R∗ , contradicting the hypoth-
esis of non-adequacy.

Now we assume that the pair goal/service is weakly and non-uniformly ade-
quate but the given formula is not satisfiable. Let ω be a legal world state and
σU be a goal instantiation assignment s.t.:

• the service is activated using the provided binding schema applied to goal
instantiation assignment;

• the service is accessible given the initial state and input assignment.

Applying the definition of service effect, we can compute a set possible en-
actment for every given non-deterministic outcome and repair in the provided
family, from the initial state and using the mapping function embed all them
into a structure ω̂.

Since the service is accessible and we are considering a valid enactment,
according to Theorem 45, the constructed interpretation ω̂ is a model of nKBU

mE

for every E ∈ E . Now we consider the definition of repair insert and update set,
and also of repaired extension of role and concept names: applying the Corollary
13, we can also conclude that constraints of ∆KBR

n (mE , nE,R) are satisfied for
every E ∈ E and for every repair R ∈ RS .

Applying Theorems 17, 50, 54, and Lemma 40, we can easily conclude that
the structure is s.t.:

ω̂ |= KBP ∧ τ(W) ∧KBH ∧∆KBB

∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE) ∧
∧

R∈RS

∆KBR
n (mE , nE,R)

)

In order to complete the proof, we have to show that the remaining conjunct is
also satisfied in ω̂.

According to the definition of repair strategy (see Figure 4.5), the selected
repair is always the minimum w.r.t. size, so let E∗ be the considered repairable
effect, let R∗ be the minimal-size repair that allows a consistent enactment.
So, applying Theorem 50, we obtain that the structure ω̂ is also a model of
the knowledge base ∆KBC

n (mE∗ , nE∗,R∗). On the other hand, since the state
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ω′′E∗,R∗ is legal, given the hypothesis of repairability of the service enactment,
and it is embedded into ω̂, by Theorem 3, we can conclude that also:

ω̂ |= τnE∗,R∗ (W)

But, since R∗ is the minimal-size repair having such a property given E∗, we
can also conclude that:

ω̂ 6|= τnE∗,R′ (W) ∧∆KBC
n (mE∗ , nE∗,R′)

for every R′ ∈ R̂k
S , where k = ‖R∗‖.

In other words, we have shown that:

ω̂ |= τnE∗,R∗ (W) ∧∆KBC
n (mE∗ , nE∗,R∗)

∧
∧

R′∈R̂k
S

¬
(
τnE∗,R′ (W) ∧∆KBC

n (mE∗ , nE∗,R′)
)
∧KBR(nE∗,R∗)

where k = ‖R∗‖. For any other repair R, given the effect E∗, we have that at
least one of the following conditions hold:

• the repair is not effective and the obtained state is not legal (ω̂ 6|= KBR(nE∗,R);

• the repair is not consistent (ω̂ 6|= ∆KBC
n (mE∗ , nE∗,R));

• the repair is effective and consistent, but its size is greater than ‖R∗‖.

So we have proved that there exists at least a conjunct in ηE,R,W,RS
that is

satisfied in ω̂. From this contradiction follows the second part of the claim.

According to Theorems 26 and 27, the previous formula in Eq. 6.2 has a size
that is double-exponential in the size of the problem settings. Despite in this
form it can be easily employed to proof the following results, it can be rewritten
in a more compact equivalent form, given the introduction of a suitable set of
flag propositional variable names2:

θ′E,R,W,RS
,
∧

E∈E

s∧
k=0

ιE,k ↔
∧

R∈Rk
S

¬
(
τnE,R

(W) ∧∆KBC
n (mE , nE,R)

)
∧

 ∧
R∈Rk

S

τnE,R
(W) ∧∆KBC

n (mE , nE,R) ∧
k−1∧
j=0

ιE,j → KBR(nE,R)


Lemma 42. The formulas θ′E,R,W,RS

and θE,R,W,RS
are equi-satisfiable

Proof. Let ω′ be a model of θ′E,R,W,RS
, it is clearly also a model of the formula

θE,R,W,RS
. On the other side, given a model ω of the formula θE,R,W,RS

that
does not interpret any name like ιE,R (otherwise such a portion of the interpre-
tation structure can be simply thrown out, since they does not play any role in
the evaluation of the given formula), it can be extended to a structure ω′, which
interprets also the propositional variables ι, s.t.:

2This formula can be also rewritten in terms of DL, once we have replaced propositional
variables names with new concept names interpreted as empty set (false assignment) or the
whole interpretation domain (true assignment), but for the sake of simplicity we adopt the
first-order compact form only to show complexity result in the following
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• the interpretation domain is the same;

• the interpretation of every concept, role and object name is preserved;

• every variables ιE,k is interpreted as > iff:

ω |=
∧

R∈Rk
S

¬
(
τnE,R

(W) ∧∆KBC
n (mE , nE,R)

)
otherwise it is interpreted as ⊥.

Such a structure is a model of the formula θ′E,R,W,RS
.

We can apply a similar encoding also to the formula in Eq. 6.3, that, as in
the previous case, is double exponentially long in the size of the problem setting,
obtaining an exponentially compact equivalent form:

η′E,R,W,RS
,
∧

E∈E

s∧
k=0

ιE,k ↔
∧

R∈Rk
S

¬
(
τnE,R

(W) ∧∆KBC
n (mE , nE,R)

)
∧
∨

E∈E

s∨
k=0

∨
R∈Rk

S

τnE,R
(W) ∧∆KBC

n (mE , nE,R) ∧
k−1∧
j=0

ιE,j ∧∆KBC
n (mE , nE,R)


We can also obtain a claim analogous to Lemma 42.

Lemma 43. The formulas η′E,R,W,RS
and ηE,R,W,RS

are equi-satisfiable

Now, we can employ such claims to provide narrower complexity results for
the goal/service adequacy checking problems devised in the previous.

Theorem 71. Given a world specification W, a consistent, accessible and re-
pairable non-deterministic e-service S, an admissible goal G, a (weakly) consis-
tent binding schema B, the problem of checking if the service is strongly (resp.
weakly) and uniformly adequate to achieve the goal considering all possible sim-
ple repair is in coNEEXP.

Proof. Given Theorem 67 (resp. Theorem 68), the decision problem can be
reduced to an implication checking, that, according to Cor. 1, is in coNEXP.
As done in previous cases regarding the effect repair, we are assuming that the
input size is defined in terms of length of domain, world and service specifications
(e.g., number of names or complexity of constraints/preconditions, etc.).

Given Lemma 42 (resp. Lemma 43) we can reduce the checking of the im-
plication in Eq. 6.4 (resp. Eq. 6.5) to an equivalent, but more compact, one
that use the formula θ′ES ,RG,W,RS

instead of θES ,RG,W,RS
(resp. η′ES ,RG,W,RS

instead of ηES ,RG,W,RS
). Moreover, the length of the former formula is linearly

bounded by the number of service effects, the maximum simple repair size (gen-
erally denoted ad s) and the size of the simple repair family (RS). According
to Theorem 26, there exists at most a number of distinct simple repair that is
exponential in the size of the input, while given Theorem 27, the the maximum
size of simple repair is linearly bounded by the input size.

In other words, the size of the formula θ′ES ,RG,W,RS
is exponential in the size

of the input: ∥∥θ′ES ,RG,W,RS

∥∥ ∈ O (2p(n)
)
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where n be the size of the instance of the problem, and p(n) a suitable polynomial
function in n.

In fact, considering the complementary problem StrongUnifRepAdequacy,
since we have that:

SATC2 ∈ NEXP =
⋃
k

NTIME
(
2mk

)
where m = O

(
2p(n)

)
. Consequently we have that:

StrongUnifRepAdequacy ∈
⋃
k

NTIME

(
22p(n)k

)
⊆
⋃
k

NTIME

(
22nk

)
= NEEXP

and, hence, that StrongUnifRepAdequacy ∈ coNEEXP.
The proof for the problem WeakUnifRepAdequacy is analogous.

Theorem 72. Given a world specification W, a consistent, accessible and re-
pairable non-deterministic e-service S, an admissible goal G, a (weakly) consis-
tent binding schema B, the problem of checking if the service is strongly (resp.
weakly) and non-uniformly adequate to achieve the goal considering all possible
simple repair is in NEEXP.

Proof. This claim essentially relies on the same reduction employed in the proof
of Theorem 71, that allows to encode the decision problem resulting from The-
orem 69 (resp. Theorem 70) into a C2 sentence that is exponentially long in the
size of the problem instance, replacing θES ,RG,W,RS

with θ′ES ,RG,W,RS
in Eq.

6.6 (resp., ηES ,RG,W,RS
with η′ES ,RG,W,RS

in Eq. 6.7). The result follows from
the observation, already used for the other complexity results, that satisfiabil-
ity check problem for this language is solvable non-deterministic exponential
time.

The results about complexity of service/goal adequacy problems are sum-
marized in Table 6.2, as for the correctness analysis, the introduction of a repair
strategy, required to deal with partially-specified services, induces at most an
exponential blow-up.

Non-uniform Uniform

Without repair NEXP coNEXP

With repair NEEXP coNEEXP

Table 6.2: Verification complexity upper-bounds for goal adequacy properties

6.2 Service Replaceability

Strictly related with the notion of service equivalence, the analysis of service re-
placeability aims at evaluating when a service can act as replacement of another
one (i.e., a faulty provider).
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Given two available services SO and SN , we are interested into the definition
of an assessment criterion to check whether it is possible to employ the service
SN instead of SO or, in other words, whether it is possible to replace the service
SO with SN . In order to consistently achieve the service replacement, we need
to impose some constraints:

• the replacing service SN must be activable in every condition in which SO

is;

• in every condition in which SN is activable instead of SO, it must be able
to achieve the “same” effects.

According to the adopted approach, the analysis of service replaceability is
carried out considering the service behavior described in the contract specifi-
cation. In other words, we require that a service can be replaced by another
service behaving the same at least when it is invoked instead of the original one:
the main issue is the definition of the behavior compatibility.

Definition 93 (Absolute service replaceability). Given two services SN and
SO, we say that SN can absolutely replace the service SO iff for every valid
activation of the latter there exists a valid activation of the former from the
same starting state that leads to the same enactment, in terms of successor
states.

This condition is quite strong to fulfill since it requires that two services
act exactly in the same way (they induce the same enactment relation) every
time the service that has to be replaced is activable. Moreover the definition
does not provide, as in the case of execution goal analysis, any tool to compute
the invocation adapter (the component that is able to accordingly map input
parameters). In the same way, we can also provide a strong notion of service
equivalence.

Definition 94 (Service equivalence). Given two services SN and SO, we say
they are strongly equivalent iff they are accessible in the same conditions and for
every valid activation of the latter there exists a valid activation of the former
from the same starting state that leads to the same enactment, in terms of
successor states, and vice-versa.

Proposition 2. Given two mutually replaceable services, they are (strong)
equivalent or equi-potent.

6.2.1 Interface adapters

Since services are activated according to a parameter signature, even not in-
tended as the usual operation signature3, we need to analyze the replaceability
w.r.t. parameter bindings. There are two main assumptions regarding the mis-
matching between considered services interfaces:

1. the mismatch is ignored, a service can replace another one even their
interfaces are different and not matchable;

3Please see [MPC01] for an interface-only replacement approach, that allows stateful com-
plex services.

178



CHAPTER 6 FUNCTIONAL PROPERTIES

2. the replaceability is considered only if an interface-adapter exists.

In the first case is easier find a service replacement, but the interface mismatch-
ing could make harder, even not tractable, the implementation of an automatic
replacement mechanism. Conversely, in the second case, it deeply relies on the
specification of the interface-adapter class and the replacement detection could
be not complete (the required adapter could not be in the considered class), but
this is the same situation of the service/goal binding, where also a feasible, but
tractable approach has been proposed4.

According to these observations, we now introduce a formalization attempt
of an adapter that is able to mediate the activation of a service employed in lieu
of the original one.

Definition 95 (Interface adapter). Given a domain specification 〈A,P,O〉,
a world specification W, and two sets of variable names XSN

and XSO
an

interface adapter is a binding schema A s.t. it assigns to each X ∈ XSN
an

access function w.r.t. W, parameterized over XSO
.

The definition of interface adapter is based on the same model adopted
for access function and query in previous sections. Also the semantics of this
constructs is similar.

Definition 96 (Interface adapter evaluation). Let SO and SN be two services.
Given a world state ω, an assignment σXSO

for the former and an interface
adapter A, the evaluation of I is an assignment σXSN

s.t. each name X ∈ XSN

is assigned to the corresponding query evaluated in ω:

σXSN
(X) = A(X)ω(σXSO

)

The definition of access function is too weak since it allows for partial func-
tions, so we need to introduce an additional constraint, as previously done for
goal binding schema.

Definition 97 (Valid interface adapter). Given a world specification W and a
service S, an interface adapter A is valid iff, for every legal world state and for
every enactment of the service, and corresponding assignments, its evaluation
assigns a value to each variable.

Given the previous definitions, we can, without difficulty, extend claims pro-
vided in Section 6.1 regarding binding schemas, because the interface adapter
is a special case of binding, defined over the input variable sets of two services.

In the following, we have to adequate formal tools provided so far: in par-
ticular, we need to extend the definition of structure embedding (and related
concepts as mapping and projection functions µ and π) so that two service def-
initions at the same time are kept into account. It can be, without difficulty,
achieved providing adequate name mapping functions that are always able to
map constructs of distinct services to distinct names or, in other words, defining
two mapping functions (unless differently stated) with disjoint domains.

4We remember that we are considering interface specification at conceptual level, not at
implementation level. Two services are the same interface if they require and provide the same
information, despite the actual component interfaces (e.g., IDL, WSDL, etc.) are slightly
different, consequently we can assume that a large number of interface adapters is a kind of
variable renaming.
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Remark 37. As done in the previous, w.l.o.g. we also assume that variable
namespaces of different sets/services are mutually disjoint. Moreover, we as-
sume that given services are always accessible and legal (which means valid or
repairable, depending on the fact that we are keeping into account also repair
strategies).

As first step, in order to evaluate if a new service SN can replace a service
SO using an adapter A, we need to check whether the accessibility is preserved,
or in other words, if it is allowed to access the new service using the adapter in
a state from which the old one is accessible.

Definition 98 (Accessibility preserving interface adapter). Given a world spec-
ification W, an interface adapter A for a pair of accessible services 〈SN , SO〉
preserve the accessibility property iff, for every state and assignment s.t. the
service SO is accessible also the service SN is accessible employing the adapter.

Remark 38. For the sake of clarity we are now ignoring the constraint related
to the availability of enough room in the interpretation domain for the possible
instantiation of new objects by the given services (since the actual number can
depend on conditional/non-deterministic behavior). So we are assuming that
in the instantiation of the axiom schema ∆KBn(spy, aux) the parameter n is
assigned to the size of the largest instantiation set provided. This approximation
will be removed in the following.

Theorem 73. Given a consistent world specification W, two accessible services
SN and SO, and a valid interface adapter A for XSN

given XSO
, SN is an ac-

cessibility preserving replacement for the service SO iff the following implication
hold:

τ(W) ∧KBPO ∧∆KBB |= KBPN

where KBPO and KBPN are the precondition knowledge bases instantiated on
service SO and SN respectively and ∆KBB is instantiated on the binding schema
A.

Proof. We assume that the candidate replacing service SN preserves the acces-
sibility of SO w.r.t. the world specification, but that the implication does not
hold. In other words, there must exist a structure ω̃ s.t.:

ω̃ |= τ(W) ∧KBPO ∧∆KBB

ω̃ 6|= KBPN

According to Theorems 11 and 17 (applied to SO) we can build a pair ω, σV =
πV(ω̃) s.t.:

• ω is legal world state w.r.t. the specification W;

• the replacing service SO preconditions are satisfied in ω given the as-
signment σXSO

obtained from restricting σV to names is XSO
, so SO is

actually accessible;

• the variables in XSN
are consistently assigned to a domain element ac-

cording to the evaluation of the binding schema (Lemma 40).
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So, given the assumption on the preservation of the accessibility we can conclude
that the service SN is also accessible in ω using the input assignment obtained
from the evaluation of binding functions. Consequently, applying Theorem 17
to SN , we can conclude that ω̃ |= KBPN , resulting in a contradiction.

We now assume that, despite the implication holds, the accessibility property
is not preserved given the world specification. It means that there exists a legal
world state ω and a consistent assignment σXSO

of the service SO s.t.:

• the service preconditions are satisfied in ω;

• the evaluation of the interface adapter A (that is assumed to be valid)
in this context provides a well-founded assignment σXSN

for SN input
variables.

Since the hypothesis of non-preservation of the accessibility property we can also
assume that the service SN is not accessible in ω using the assignment σXSN

.
We can apply the mapping function µV to the pair 〈ω, σV〉, obtaining a

new interpretation structure ω̃ that embeds such a pair and that, according to
Theorems 10 and 17 (applied to SO), is also s.t.:

ω̃ |= τ(W) ∧KBPO

Moreover, given the definition of query evaluation, we can also conclude that
for each X ∈ XSN

, we have that:

ω̃ |= X ≡ A(X)(XSO
)

since we have assumed that σXSN
(X) = A(X)ω(σXSO

). It follows that ω̃ |=
∆KBB and we can check that implication antecedents are satisfied and, since
the implication is assumed to be verified, we can finally conclude that ω̃ |=
KBPN . Applying Corollary 3 to service SN we can now infer also that this
service is also accessible in ω using σXSN

, obtaining a contradiction that proves
the claim.

Theorem 74. Given a consistent world specification W, two accessible services
SN and SO, and a valid interface adapter A for XSN

given XSO
, the problem

of checking whether SN is an accessibility preserving replacement for the service
SO using A is in coNEXP.

Proof. As done for other cases previously analyzed, we can solve the problem
applying the property proved in Theorem 73, reducing it to an implication
decision in C2 logics, hence we use the result of Proposition 1. Like other
reductions it is also linear in the size of the input (number and length of axioms,
preconditions and effects specifications).

6.2.2 Reachability-preserving replaceability

In the previous section, we have generally discussed about the notions of service
functional equivalence and replaceability, providing also a formal definition of
interface adapter. Now, we address the problem of evaluating the possibility of
replace a service with another one w.r.t. the state reachability.

Given the general equivalence definition, we can easily notice that it is in
some way too hard to fulfill to be useful. Thus, a weaker equivalence condition
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can be stated as the following: it simply ensures that the new service is able, at
least, to reach any state previously reachable (and so to instantiate at least the
same objects).

Definition 99 (Reachability preserving service replaceability). Given two ser-
vices SN and SO, we say that SN can replace the service SO preserving the
reachability iff for every valid activation of the latter there exists a valid acti-
vation of the former from the same starting state ω that leads to an enactment
containing at least every final state included in the enactment of the latter (mod-
ulo the isomorphism relation).

Roughly speaking, in order to check whether is a new service can replace
the old one, we have to verify if for every possible enactment of the latter the
former can possibly simulate it:

• instantiating the same number of new objects5;

• enforcing the same update effects on the extension of the concept/role
name.

Example 11. Given services S and S1 described in Examples 2 and 3, we can
easily observe that, despite service S is always activable when S1 is activable
(the preconditions of the latter simply imply the ones of the former), given a
valid, and accessibility preserving, interface adapter A defined as:

A = {x1(x1, x2) = x1, x2(x1, x2) = x2}

the service S cannot replace the service S1 preserving the reachability of the en-
actments, since, it does not change the registration of vehicles eventually owned
by the service requestor.

On the other hand, we can also prove that the service S1 can never replace
the service S since a suitable interface adapter cannot exists: in fact we have
explicitly asserted the existence of at least two distinct towns (see Table 4.1),
hence we can easily build a counterexample. Moreover, removing this constraint,
we cannot ensure the accessibility of the service itself given the observation of
Example 3.

Example 12. Given services S and S1 described in Examples 2 and 3, now we
consider the service S2 defined as:

X = {x1, x2}
Y = ∅
P = x1 u Citizen and x2 u Town and not x2 u ∃residentIn−.x1

E =
{
−residentIn(x1,∃residentIn−.x1),+residentIn(x1, x2)

}
∪
{
−registeredIn(Vehicle u ∃owner.x1,∃residentIn−.x1)

}
∪ {+registeredIn(Vehicle u ∃owner.x1, x2)}

5Given the definition of reachability the basic definition implies a stronger constraint: that
the service is able to instantiate exactly the same new objects, but given the isomorphism
relation among successor state this constraint can be satisfied once the condition on the
instance set size is verified.
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It clearly can replace the service S1 preserving the reachability (it is a direct
generalization), but it cannot replace the service S, while S cannot replace S2.

Moreover, given the non-deterministic service S3 that merges behaviors of S
and S2:

X = {x1, x2}
Y = ∅
P = x1 u Citizen and x2 u Town and not x2 u ∃residentIn−.x

E = {E1, E2}

where:

E1 =
{
−residentIn(x1,∃residentIn−.x1),+residentIn(x1, x2)

}
E2 = E1 ∪

{
−registeredIn(Vehicle u ∃owner.x1,∃residentIn−.x1)

}
∪ {+registeredIn(Vehicle u ∃owner.x1, x2)}

we can verify that while neither S nor S2 can replace S3 preserving the reacha-
bility property, S3 can replace both of them.

We now analyze such a property in order to provide an effective procedure
to evaluate it relying on the formalization strategy devised so far. In the rest
we employ the following notations for conciseness sake:

κO,N,p ,
∧

i∈1...‖YO‖

[YO]i ≡ [YN ]pi ∧∆KBI
n(Top′,mN,p) ∧∆KBU

c (mN,p)

εN,p ,
∧

A∈A

m(A) ≡ mN,p(A) ∧
∧

P∈P

∀x, y.m(P )(x, y)↔ mN,p(P )(x, y)

λE,n , {N |E ∈ E , N ∈ leaves(E), 〈YN , EN 〉 = v(N), ‖YN‖ = n}

where O and N denotes two leaf service effects (with related renaming func-
tions), p is permutation of size n and E is a non-deterministic service effect
specification.

Theorem 75. Given two accessible and valid services SO and SN , without
redundant effect specification, and a valid interface adapter A w.r.t. the world
specification W, s.t. A preserve the accessibility, the service SN can replace
the service SO using A preserving the reachability iff for each n ∈ 0 . . . nmax,
where nmax is the size of the largest instantiation set for the service SO, for
each E ∈ EO, and for each O ∈ leaves(E) s.t. 〈YO, EO〉 = v(O) and ‖YO‖ = n
the following implication holds:

τ(W) ∧KBPO ∧∆KBB ∧ φO ∧∆KBI
n(Top′,m) ∧∆KBU

c (m) ∧ τm(W)

∧
∧

N∈λEN ,n

φN →
∧

p∈nPn

κO,N,p |=
∨

N∈λEN ,n

φN ∧
∨

p∈nPn

εN,p

(6.8)

where:

• φO and φN are resp. the branching path formulas associated with the leaves
O and N of corresponding effect specification trees;
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• nPn denotes the set of all permutations of size n of {1 . . . n};

• Top′ is the concept denoting the active domain of resulting system state;

• m is the name mapping function for the service SO while mN,p is the
name mapping function for a leaf effect N of the service SN , considering
the permutation p.

The axiom schemas are instantiated accordingly to the specification of various
service effects.

Proof. We start assuming that the devised implications hold given a pair of
services SO and SN , the interface adapter and the world specification, but that
the reachability is not preserved by the replacement. In other words, we are
assuming that there exists at least a valid enactment (i.e., leading to a legal
world state) 〈ω′, σ′YO

〉 ∈ SO(ω, σXO
) of SO s.t. there does not exist any con-

sistent instantiation assignment σ′YN
s.t. 〈ω′, σ′YN

〉 ∈ SN (ω,Aω(σXO
)), where

Aω(σ) denotes the evaluation of interface adapter given a world state and an
input assignment. We can restrict the analysis to the leaf effect of SN that
enforces the given enactment6, let O∗ be such an effect and let n be the size
of its instantiation set. Considering every possible leaf effect N of SN , without
keeping into account its branching condition, having an instantiation set of size
n and any possible bijective mapping between the instantiation set of N and
O∗, we built the pair 〈ω′N,p, σ

′
YN,p
〉, where:

• σ′YN,p
is the instantiation assignment for N over the active domain ∆ω′ \

∆ω applying the permutation p ∈ nPn to the instantiation assignment of
O∗7;

• ω′N,p is the target state obtained enforcing the effect N given the instan-
tiation assignment and the input assignment obtained by the evaluation
of the interface adapter to σXO

in ω.

Now, we build a structure ω̂ s.t.:

• the enactment of SO is embedded into it according to the function µn

(please refer to page 129) using the name mapping function m;

• each enactment of each leaf effect N of SN having an instantiation set of
size n obtained in the previous step applying a permutation p is embedded
according to the function µn using the name mapping function mN,p;

• the name Top′ is interpreted as ∆ω′ .

Since the agreement on the interpretation of the result state active domain such
a construction is well-founded. Given the hypothesis on the validity of service
SO and the enactment, applying Theorems 34, 35, 38, and 45 we can easily
verify that the provided structure ω̂ is s.t.:

ω̂ |= τ(W) ∧KBPO ∧ φO∗ ∧∆KBI
n(Top′,m) ∧∆KBU

c (m) ∧ τm(W)
6Generally speaking, there can exist multiple leaf effects, belonging to different trees

E ∈ EO, given the non-reducing hypothesis, that can enforce the same effect, but they are
equivalent for the argumentation of the proof.

7Other instantiation alternatives are irrelevant, since can not lead to a compatible target
state.
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Moreover, since we have applied the interface adapter A, assumed to be valid,
according to Lemma 40, we can also conclude that:

ω̂ |= ∆KBB

Considering each possible leaf effect N of SN we can have two possible alterna-
tives according to the fact that the branching precondition φN does or not hold
in ω using the instantiation obtained by the application of the interface adapter
A to σXO

. Applying Theorem 35 (to SN ) in the latter case, since:

ω̂ 6|= φN

the corresponding material implication also holds ω̂. In the former case, consid-
ering each possible permutation p over n elements, we can, without difficulty,
verify that the construction of ω̂ is s.t.:

ω̂ |=
∧

i∈1...‖YO∗‖

[YO∗ ]i ≡ [YN ]pi

since for each instantiation variable of N we have assigned the value of an in-
stantiation variable of the effect O∗. Applying Theorem 38, extended in order to
keep into account the renaming also of the instantiation variables, as described
at page 5.2.2, and Theorem 45 to each enactment of SN we can conclude also
that:

ω̂ |= ∆KBI
n(Top′,mN,p) ∧∆KBU

c (mN,p)

In other words, we have shown that antecedents of implication in Eq. 6.8 are
satisfied in ω̂. Since, by hypothesis, such an implication holds, we can also
conclude that:

ω̂ |=
∨

N∈λEN ,n

φN ∧
∨

p∈nPn

εN,p

In other words, there must exist at least an effect N∗ of SN and a permutation
p∗ ∈ nPn s.t. the interpretation of world state names (concepts and roles)
agree. For each name N ∈ A ∪P we have that:

m(N)ω̂ = mN∗,p∗(N)ω̂

but, given the properties of embedding functions µ, we have also that:

m(N)ω̂ = Nω′ , Nω′N∗,p∗ = mN∗,p∗(N)ω̂

Given the agreement on the active domain and named objects, that are con-
stantly interpreted in any structures, we can now conclude that ω′N∗,p∗ = ω′,
but that means that also SN can achieve the state ω′, since ω′N∗,p∗ belongs to
its enactment set, contradicting the hypothesis and proving the first part of the
claim.

Now, we conversely assume that the service SN can replace the service SO

using the adapter A preserving the reachability, but the implication does not
hold. In other words, there must exist a structure ω̂ s.t. it is a model of the
antecedent formula for some leaf effect O∗ of SO having an instantiation set of
size n:

τ(W) ∧KBPO ∧∆KBB ∧ φO∗ ∧∆KBI
n(Top′,m) ∧∆KBU

c (m) ∧ τm(W)

∧
∧

N∈λEN ,n

φN →
∧

p∈nPn

κO∗,N,p
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but there does not exist any pair 〈N, p〉, s.t.:

• N is a leaf effect of SN having an instantiation set of size n;

• p is a permutation in nPn;

• ω̂ is a model of φN ;

• ω̂ is a model of εN,p;

According to Theorems 34, 35, 39, and 46 an enactment 〈ω′, σ′YO
〉 ∈ SO(ω, σXO

)
of SO is embedded using m into ω̂ enforcing the effect O∗. Because the resulting
state is legal the enactment can actually take place.

Since ω̂ |= KBB we can conclude, according to Lemma 40, that we are
considering the activations of service SN obtained applying the interface adapter
A to the assignment σXO

in ω. Moreover, we can project out from the structure
ω̂ various world interpretations or extended interpretations using the adequate
projection function π. We now consider all possible leaf effects N of SN s.t.
the instantiation set has a size of n. Also in this case we need to cope with
two alternatives, depending on whether φN is satisfied in ω̂ or not. If ω̂ |= φN ,
according to Theorem 35, we can conclude that the effect N can be selected
and possibly realized in ω by SN , since its branching condition is satisfied in ω.
Given the accessibility preserving property at least a suitable effect N∗ must
exist. Moreover, since we have also that:

ω̂ |=
∧

p∈nPn

κO∗,N,p

Applying Theorems 39 and 46 we also have that it possible to project out from
ω̂ using the name mapping mN,p n! enactments 〈ω′N,p, σ

′
YN,p
〉 of the effect N

s.t.:

• each one instantiates the same objects, since the resulting active domain
is the same (Top′

ω̂ = ∆ω′ = ∆ω′N,p);

• each one permutes in a specific way the instantiation set ∆ω′ \∆ω of SO.

Since we are keeping into account all possible permutations of the n instantiation
variables, we can also conclude that there is any other effective enactment of a
leaf effect of SN s.t. it has the same target state of SO. Considering other leaf
effects of SN , since their branching conditions are not satisfied in ω, we can,
without difficulty, see that they can never be selected by SN and, thus, they
can be ignored.

So far, we have built a set of possible enactments of SN resulting from the
application of the interface adapter A, embedded into the structure ω̂, and we
have also shown that they are all the enactments relevant w.r.t. the reachability
of ω′. In other words, since we have assumed that the reachability property of
SO is preserved using SN applying A, we have that there is an element N∗, p∗

of this set s.t. ω′N∗,p∗ = ω′. More specifically, we have that for each name
N ∈ A ∪P we have that:

Nω′ = Nω′N,p

but, given the properties of embedding functions µ, it follows also that:

m(N)ω̂ = Nω′ , Nω′N∗,p∗ = mN∗,p∗(N)ω̂
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and, hence, we can conclude that:

m(N)ω̂ = mN∗,p∗(N)ω̂

In other words, we have shown that:

ω̂ |= εN∗,p∗

Since, we have also that ω̂ |= φN∗ , we can conclude that the consequent of
implication in Eq. 6.8 is satisfied contradicting the hypothesis and proving the
claim.

The previous result enables an effective procedure to check whether a service
replacement preserves the state reachability. Moreover we can also provide an
upper bound of the problem complexity.

Theorem 76. Given a consistent world specification W, two accessible services
SN and SO, and a valid interface adapter A for XSN

given XSO
, the problem

of checking whether SN is a reachability preserving replacement for the service
SO using A is in coNEEXP.

Proof. According to Theorem 75, the decision problem can be reduced to a
linear number of entailment checks in C2: one for each leaf effect of SO. Given
the Cor. 1, the complexity of the entailment checking is coNEXP in the size of
the formula.

We consider the complementary problem of checking whether a specific effect
e of SO having an instantiation set of size ne can be preserved by the replacing.

Reachabilitye ∈
⋃
k

NTIME
(
2f(n)k

)
Since the formula has a number of terms that is factorial in ne (f(n) ≈ g(ne) ∈
O (ne!)), we have that:

Reachabilitye ∈
⋃
k

NTIME
(
2(ne!)k

)
Applying the Stirling’s approximation we have so:

Reachabilitye ∈
⋃
k

NTIME

(
22ne

k
)
⊆
⋃
k

NTIME

(
22nk

)
= NEEXP

Since we are looking for a complexity upper bound, we take as parameter the
maximum number nmax of instantiation variables, that is linear in the size of
the input, concluding that the resulting complexity class is coNEEXP.

Now, we extend the analysis of this property keeping also into account the
repair strategy: in other words, we analyze the replacement among accessible
and repairable (but not necessarily valid) services. For the sake of brevity, we
use the following notation:

εN,p,R,R′ ,
∧

A∈A

nR(A) ≡ nN,p,R′(A)∧
∧

P∈P

∀x, y.nR(P )(x, y)↔ nN,p,R′(P )(x, y)

We point out, that since repair set is generated starting from the domain
and service specifications, each service has its own.
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Theorem 77. Given two accessible and repairable services SO and SN , w.r.t.
the repair sets RO and RN resp., without redundant effect specification, and a
valid interface adapter A w.r.t. the world specification W, s.t. A preserve the
accessibility, the service SN can replace the service SO using A preserving the
reachability iff for each n ∈ 0 . . . nmax, where nmax is the size of the largest in-
stantiation set for the service SO, for each E ∈ EO, and for each O ∈ leaves(E)
s.t. 〈YO, EO〉 = v(O) and ‖YO‖ = n the following implication holds:

τ(W) ∧KBPO ∧∆KBB ∧ φO ∧∆KBI
n(Top′,m) ∧∆KBU

c (m)

∧
∧

R∈RO

∆KBR
n (m,nR) ∧

∨
R∈RO

(
τnR

(W) ∧∆KBC
n (m,nR)

)
∧

∧
N∈λEN ,n

φN →
∧

p∈nPn

κO,N,p ∧
∧

R∈RN

∆KBR
n (mN,p, nN,p,R) |=

sO∧
k=0

∧
R∈Rk

O

τnR
(W) ∧∆KBC

n (m,nR) ∧
∧

R′∈R̂k
O

¬
(
τnR′ (W) ∧∆KBC

n (m,nR′)
)
→

∨
N∈λEN ,n

φN ∧
∨

p∈nPn

sN∨
h=0

∨
R′∈Rh

N

∆KBC
n (mN,p, nN,p,R′) ∧ εN,p,R,R′

∧
∧

R′′∈R̂h
N

¬
(
τnN,p,R′′ (W) ∧∆KBC

n (mN,p, nN,p,R′′)
)

(6.9)

where:

• φO and φN are resp. the branching path formulas associated with the leaves
O and N of corresponding effect specification trees;

• nPn denotes the set of all permutations of size n of {1 . . . n};

• Top′ is the concept denoting the active domain of resulting system state;

• m is the name mapping function for the service SO while mN,p is the
name mapping function for a leaf effect N of the service SN , considering
the permutation p;

• nR is the name mapping function for the service SO applying the repair
R;

• nN,p,R is the name mapping function for the service SN , enforcing the
effect N , considering the permutation p, applying the repair R;

• so and sn are resp. the size of repair set for SO and SN ;

• Rk
O, R̂k

O, Rk
N , and R̂k

N are the sets of repairs for SO and SN resp. of size
equals or less than k as introduced at page 163.

The axiom schemas are instantiated accordingly to the specification of various
service effects.
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Proof. The proof of this claim follows the outline of Theorem 75, extending
them in order to deal also with the employment of repair search algorithm (see
Figure 4.5). We start assuming that the devised implications hold given a pair
of services SO and SN , the interface adapter and the world specification, but
that the reachability is not preserved by the replacement. In other words, we
are assuming that there exists at least an enactment 〈ω′, σ′YO

〉 ∈ SO(ω, σXO
) of

and a repair R∗ (at least the empty one) of SO s.t.:

• the enactment is, possibly, not legal but it can be repaired by R∗ leading
to ω′′;

• there does not exist any other repair of SO smaller than R∗ that can
actually repair the enactment;

• there does not exist any consistent instantiation assignment σ′YN
s.t.

〈ω′′, σ′YN
〉 can be actually obtained from SN (ω,Aω(σXO

)) applying any
repair of SN .

As in the previous case, we can restrict the analysis to the leaf effect of SN that
enforces the given enactment, let O∗ be such an effect and let n be the size of
its instantiation set.

For this effect of SO, we consider also other possible repair R ∈ RO and
resulting states ω′′R, while for SN we consider every possible leaf effect N of SN ,
ignoring its branching condition, having an instantiation set of size n, every
possible bijective mapping between the instantiation set of N and O∗, and
every possible repair R′ ∈ RN and we built the pair 〈ω′′N,p,R′ , σ′YN,p

〉, where:

• σ′YN,p
is the instantiation assignment for N over the active domain ∆ω′ \

∆ω applying the permutation p ∈ nPn to the instantiation assignment of
O∗;

• ω′′N,p,R′′ is the target state obtained enforcing the effect N given the in-
stantiation assignment, the input assignment obtained by the evaluation
of the interface adapter to σXO

in ω, and applying the repair R′′.

Now, we build a structure ω̂ s.t.:

• the enactment of SO and related repairs are embedded into it according to
the function µR using a name mapping function m for the base enactment
and a family of mapping functions nR for the repaired ones;

• each enactment of each leaf effect N of SN having an instantiation set of
size n obtained in the previous step applying a permutation p and a repair
R′′ is embedded according to the function µR using the name mapping
functions mN,p and mN,p,R′′ ;

• the name Top′ is interpreted as ∆ω′ .

Since the agreement on the interpretation of the result state active domain and
common names such a construction is well-founded.

Given the hypothesis on the accessibility of service SO and the enactment,
applying Theorems 34, 35, 38, and 45 we can easily verify that the provided
structure ω̂ is s.t.:

ω̂ |= τ(W) ∧KBPO ∧ φO∗ ∧∆KBI
n(Top′,m) ∧∆KBU

c (m)
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Now we consider the definition of repair insert and update set, and also of
repaired extension of role and concept names: applying the Corollary 13, we
can also conclude that constraints of ∆KBR

n (m,nR) are satisfied, for the given
effect O, for every repair R ∈ RO. Since the service is reparable, applying
Theorem 50, it follows that the structure ω̂ is also a model of the knowledge base
∆KBC

n (m,nR∗). Moreover, since the state ω′′R∗ is legal, given the hypothesis of
repairability of the service enactment, and it is embedded into ω̂, by Theorem
3, we can conclude that also:

ω̂ |= τnR∗ (W)

Since we have applied the interface adapter A, assumed to be valid, according
to Lemma 40, we can also conclude that:

ω̂ |= ∆KBB

Considering each possible leaf effect N of SN we can have two possible alterna-
tives according to the fact that the branching precondition φN does or not hold
in ω using the instantiation obtained by the application of the interface adapter
A to σXO

. Applying Theorem 35 (to SN ) in the latter case, since:

ω̂ 6|= φN

the corresponding material implication also holds ω̂. In the former case, con-
sidering each possible permutation p over n elements, we can easily verify that
the construction of ω̂ is s.t.:

ω̂ |=
∧

i∈1...‖YO∗‖

[YO∗ ]i ≡ [YN ]pi

since for each instantiation variable of N we have assigned the value of an
instantiation variable of the effect O∗. Applying Theorem 38, extended in order
to cope with the renaming also of instantiation variables as described at page
5.2.2, and Theorem 45 to each enactment of SN we can conclude also that:

ω̂ |= ∆KBI
n(Top′,mN,p) ∧∆KBU

c (mN,p)

Finally, we apply the definition of repair insert and update sets w.r.t. the
service SN : given the Corollary 13, we can conclude that constraints obtained
instantiating the axiom schema ∆KBR

n (mN,p, nN,p,R) are satisfied for the every
effect N , for every permutation p ∈ nPn, and for every repair R ∈ RN .

In other words, we have shown that antecedents of implication in Eq. 6.9
are satisfied in ω̂. Since, by hypothesis, such an implication holds, we can also
conclude that its consequence are satisfied in ω̂. Considering the enactment of
SO and its repair R∗, since it is actually enforced, according to the given repair
search strategy, we can also conclude that:

ω̂ 6|= τnR′ (W) ∧∆KBC
n (m,nR′)

for every R′ ∈ R̂k
O, where k = ‖R∗‖. Applying the material implication, we can

also conclude that there exist a leaf effect N∗ of SN , having an instantiation set
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of size n, a permutation p∗, and a repair R̃ of size h, s.t. ω̂ is a model of:

∆KBC
n (mN∗,p∗ , nN∗,p∗,R̃) ∧ εN∗,p∗,R∗,R̃

∧
∧

R′′∈R̂h
N

¬
(
τnN∗,p∗,R′′ (W) ∧∆KBC

n (mN∗,p∗ , nN∗,p∗,R′′)
)

For any other repair R′, given the effect N∗, we have that at least one of the
following conditions hold:

• the repair is not effective and the obtained state is not legal:

ω̂ 6|= KBR(nN∗,p∗,R)

• the repair is not consistent:

ω̂ 6|= ∆KBC
n (mN∗ , nN∗,p∗,R)

• the repair is effective and consistent, but its size is greater than
∥∥∥R̃∥∥∥.

It means that repair R̃ is effective and can be actually enforced by SN . For each
name N ∈ A ∪P we have that:

nR∗(N)ω̂ = nN∗,p∗,R̃(N)ω̂

but, according to properties of embedding functions µ, we have also that:

nR∗(N)ω̂ = Nω′′R∗ , N
ω′′

N∗,p∗,R̃ = nN∗,p∗,R̃(N)ω̂

Given the agreement on the active domain and named objects, that are con-
stantly interpreted in any structures, we can now conclude that ω′′

N∗,p∗,R̃
=

ω′′R∗ = ω′′, but that means that also SN can achieve the state ω′′, since ω′
N∗,p∗,R̃

belongs to its repaired enactment set, contradicting the hypothesis and proving
the first part of the claim.

Now, we conversely assume that the service SN can replace the service SO

using the adapter A preserving the reachability, but the implication does not
hold. In other words, there must exist a structure ω̂ s.t. it is a model of the
antecedent formula for some leaf effect O∗ of SO having an instantiation set of
size n s.t. the implication antecedents are satisfied in it and, let R∗ ∈ RO be
the smallest repair of SO s.t. ω̂ is a model of:

ω̂ |= τnR∗ (W) ∧∆KBC
n (m,nR∗)

that, given the repairability hypothesis, must always exist, there does not exist
any triple 〈N, p,R′〉, s.t.:

• N is a leaf effect of SN having an instantiation set of size n;

• p is a permutation in nPn;

• R′ is a repair of SN ;
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• let h = ‖R′‖, ω̂ is a model of:

φN ∧∆KBC
n (mN,p, nN,p,R′) ∧ εN,p,R∗,R′

∧
∧

R′′∈R̂h
N

¬
(
τnN,p,R′′ (W) ∧∆KBC

n (mN,p, nN,p,R′′)
)

According to Theorems 34, 35, 39, 46, and 51, an enactment 〈ω′, σ′YO
〉 ∈

SO(ω, σXO
) of SO is embedded using m into ω̂ enforcing the effect O∗, while the

repair, according to R∗, is also embedded into this structure using nR∗ . Given
the Lemma 21, because the repair is a minimal-size one and the final state is
legal the enactment can actually take place. In other words, we have shown that
including repairs in RO, the service SO can actually reach the state ω′′ = ω′′R∗ .

Since ω̂ |= KBB we can conclude, according to Lemma 40, that we are
considering the activations of service SN obtained applying the interface adapter
A to the assignment σXO

in ω. Moreover, we can project out from the structure
ω̂ various world interpretations or extended interpretations using the adequate
projection function π, given the available repair set RN . As in the previous case,
we focus the analysis on all possible leaf effects N of SN s.t. their instantiation
set size is n. Also in this case, we need to cope with two alternatives depending
on whether φN is satisfied in ω̂ or not. If ω̂ |= φN , according to Theorem 35, we
can conclude that the effect N can be selected and eventually enforced in ω by
SN if its branching condition is satisfied in ω. Given the accessibility preserving
property, at least a suitable effect N∗ must exist. Moreover, since we have also
that:

ω̂ |=
∧

p∈nPn

κO∗,N,p ∧
∧

R∈RN

∆KBR
n (mN,p, nN,p,R)

So, applying Theorems 39 and 51 we have that we can project out from ω̂ using
the name mapping functions nN,p,R a set containing O (2n · n!) possible repaired
enactments 〈ω′′N,p,R, σ

′
YN,p
〉 of the effect N s.t.:

• each one instantiates the same objects, since the resulting active domain
is the same (Top′

ω̂ = ∆ω′′ = ∆ω′′N,p,R);

• each one permutes in a specific way the instantiation set ∆ω′′ \∆ω of SO;

• each one describe an enactment has been repaired using a specific element
R ∈ RN .

Since we are keeping into account all possible permutations of the n instantiation
variables, we can also conclude that there is any other effective enactment of a
leaf effect of SN s.t. it has the same target state of SO. Other leaf effects of
SN do not play a significant role and can be ignored: in fact, they can never
be selected in ω by SN , no matter as the service has been activated, since their
branching conditions are not satisfied.

So far, we have built a set of possible enactments of SN resulting from
the application of the interface adapter A, applying any possible repair in RN ,
embedded into the structure ω̂, and we have also shown that they are all the
enactments relevant w.r.t. the reachability of ω′′. In other words, since we have
assumed that the reachability property of SO is preserved using SN applying A,
we have that there is an element N∗, p∗, R̃ of this set s.t. ω′′N∗,p∗,ω̃ = ω′′.
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According to previous argumentation, we have that for each name N ∈ A∪P
we have that:

Nω′′ = N
ω′′

N∗,p∗,R̃

but, given the properties of embedding functions µ, it follows also that:

nR∗(N)ω̂ = Nω′′ , N
ω′′

N∗,p∗,R̃ = nN∗,p∗,R̃(N)ω̂

and, hence, we can conclude that:

nR∗(N)ω̂ = nN∗,p∗,R̃(N)ω̂

In other words, we have that:

ω̂ |= εN∗,p∗,R∗,R̃

Moreover, given the effect N∗ and the repair R̃, according to the definition of
repairable service and Theorem 50, we can conclude also that:

ω̂ |= τnN∗,p∗,R̃
(W) ∧∆KBC

n (mN∗,p∗ , nN∗,p∗,R̃)

Since the repair R̃ is also the smallest one that is able to enforce domain
constraint upon service effects without retracting them, for any other repair
R′ ∈ RN s.t. ‖R′‖ <

∥∥∥R̃∥∥∥, we have that:

ω̂ |= τnN∗,p∗,R′ (W) ∧∆KBC
n (mN∗,p∗ , nN∗,p∗,R′)

Finally, since we have also assumed that ω̂ |= φN∗ , we have shown that also the
consequent of implication in Eq. 6.9 is satisfied contradicting the hypothesis
and proving the claim.

Now we can provide an upper bound of the complexity for the problem of
checking the reachability property of a pair of services in case of replacement
keeping into account also the update repair.

Theorem 78. Given a consistent world specification W, two accessible services
SN and SO, and a valid interface adapter A for XSN

given XSO
, the problem

of checking whether SN is a reachability preserving replacement for the service
SO using A considering all possible simple repairs is in coNEEXP.

Proof. According to Theorem 77, the decision problem can be reduced to a
linear number of entailment checks in C2: one for each leaf effect of SO. Given
the Cor. 1, the complexity of the entailment checking is coNEXP in the size of
the formula.

We consider the complementary problem of checking whether a specific effect
e of SO having an instantiation set of size ne can be preserved by the replacing.

RepReachabilitye ∈
⋃
k

NTIME
(
2f(n)k

)
In this case the size of the formula is s.t. it contains for every possible repair
R ∈ RO a sub-formula for every possible pair of permutations of ne and repairs
R′ ∈ RN having a length that is linear in the number of possible repairs. Given
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Theorem 26, the length of the formula is approx. f(n) ∈ O
(
2n · ne! · 2p(n)

)
and

we have that:

RepReachabilitye ∈
⋃
k

NTIME
(
2(2n·ne!·2p(n))k)

Applying the Stirling’s approximation we have so:

RepReachabilitye ∈
⋃
k

NTIME
(
2(2n·2ne ·2p(n))k)

⊆
⋃
k

NTIME

(
22nk

)
= NEEXP

Since we are looking for a complexity upper bound, we take as parameter the
maximum number nmax of instantiation variables, that is linear in the size of
the input, obtaining that the resulting complexity class is coNEEXP.

Remark 39. We notice that in this case we have to cope with two exponen-
tial blow-ups: one due to the exponential number of suitable repairs (for both
services) and the other due to the number of possible binding of instantiation
variables. But, since, they are orthogonal, it does not involve an increment of
the problem asymptotic complexity.

6.2.3 Adequacy-preserving replaceability

As pointed out in previous discussion, since the reachability-preserving prop-
erties are not completely satisfactory, we analyze the problem of service re-
placement keeping into the account the tacitly intended user’s goal: a service
replacement is valid w.r.t. a goal only if it preserves the adequacy properties of
the original service.

In fact, in the case of non-deterministic services we can easily try out that
a service with a higher degree non-determinism can generally replace a more
deterministic one preserving the reachability property, but from the point of
view of the service user it can exhibit unexpected behaviors, leading to some
inconsistency in terms of service contract. On the other hands a more restrictive
form of state-based replaceability can not be easily defined without requiring
a near-complete service equivalence. The explicit introduction of the user goal
enable to filter out irrelevant behaviors, focusing the analysis on more interesting
ones (at least according to client perspective).

According to Lemma 41, and the definition of uniform/non-uniform ade-
quacy properties, we can, without difficulty, conclude that is possible to induce
on the adequacy level space L = {WNU,WU,SNU,SU} a partial order relation
≺ defined as depicted in Figure 6.1.

Lemma 44. Let G be a goal and S be a service s.t. the adequacy level of the
service w.r.t. G given a binding B is l ∈ L, then S is l′-adequate for each l′ ≺ l.

Proof. Trivial.

Definition 100 (Goal adequacy preserving service replaceability). Given two
services SN and SO, we say that SN can replace the service SO preserving the
adequacy w.r.t. a goal G if for a valid activation binding of the latter there exists
a valid activation binding of the former s.t. it has at least the same adequacy
level w.r.t. the goal.
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Figure 6.1: The service/goal adequacy level order relation ≺

In other words, if the service that has to be replaced is able to achieve the
goal, then the replacing service must also be able to do so. On the other hand,
if the replacing service can possibly lead to a world state where the goal is not
achieved, also the replaced service must admit such a kind of outcome. In this
way it is possible to preserve adequacy properties across the replacement.

Example 13. Given services S and S1 defined in Examples 2 and 3, the inter-
face adapter A defined in Example 11, and the user goal G defined in Example
10, we can conclude that, since SNU ≺ SU, the service S can replace S1 pre-
serving the user goal adequacy, despite it does not preserve the reachability.
Moreover, for both services S2 and S3 defined in Example 12 the same property
holds: it is possible since the user goal simply express that the service user does
not care about the registration (despite it could eventually matter for the service
provider).

Service S1 cannot replace S w.r.t. the goal G, while, if consider the more
specific, but even non-ground, goal G1 of a resident of town1 aiming to change
its own residence to town2, we can use the service S1 in vece of service S.

Remark 40. The ability of reasoning w.r.t. to user goals enable us to enforce
a kind of selective analysis on service effects, keeping into account only ones
that are explicitly considered as relevant, providing another tool to deal with
incomplete specifications (the other one is the effect repair). Moreover, the def-
inition of a non-ground (intensional) user goal allows us to move such kind of
analysis/evaluation of these properties at system design/tuning-time from the
execution-time required by an approach leveraging on concrete goal definition.
Given the high computational complexity of involved problems, it is a very de-
sirable feature.

In the following, we analyze this problem considering the specification of goal
binding schemas and interface adapters. We initially provide some other useful
definitions. Given a binding schema B defined over the alphabets X and Y, and
a specification 〈A,P,O〉, we introduce an unfolding function ρ that, given any
concept expression in ALCQIO, possibly including references to variables in Y,
returns a new expression ALCQIO, referencing variables in X. The function is
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defined as follows:

ρB(Y ) , B(X)

ρB(A) , A

ρB(C u C ′) , ρB(C) u ρB(C ′)

ρB((./ n R C)) , (./ n R ρB(C))

ρB({o}) , {o}
ρB(¬C) , ¬ρB(C)

Definition 101 (Binding schema composition). Given two binding schemas A
and B defined resp. over 〈XA,YA〉 and 〈XB ,YB〉, s.t. the input alphabet of A
is equal to the output alphabet of B (at least considering a variable renaming),
the composition A / B is a new binding schema defined over 〈XB ,YA〉 s.t. for
each variable name V ∈ YA, the access function (A / B)(V ) is defined as:

(A / B)(V ) , ρB(A(V ))

We can now characterize the semantics of the binding schema composition
using the following results.

Lemma 45. Given a specification 〈A,P,O〉, two binding schemas A and B
defined resp. over 〈XA,YA〉 and 〈XB ,YB〉, s.t. the input alphabet of A is
equal to the output alphabet of B, a world state ω and an assignment σXB

, s.t.
both B and A/B are consistently evaluated, let σYB

be the assignment obtained
by the evaluation of binding schema B in ω given such an input, its evaluation
is:

A(Y )ω(σYB
) = (A / B)(Y )ω(σXB

)

for each Y ∈ YA.

Proof. In order to prove the claim, we need to show that given an expression C =
A(Y ), for some Y ∈ YA involving some singleton variable names in XA = YB ,
its evaluation in the extended interpretation ω / σXA

is equal to the evaluation
of ρB(C) in the extended interpretation ω/σXB

, assuming that σXA
is obtained

evaluating B in the latter structure. In other words, we need to show that:

Cω/σY = [ρB(C)]ω/σX

given that σY = Bω(σX).
In the following, we prove the claim by induction on the expression language.

• Y ω/σY = [ρB(Y )]ω/σX where Y ∈ Y. By the definition of function ρB :

[ρB(Y )]ω/σX = [B(Y )]ω/σX

and according to the hypothesis and properties of extended interpretation:

[B(Y )]ω/σX = Y ω/σY

• Aω/σY = [ρB(A)]ω/σX where A ∈ A. By the definition of translation
function ρB :

[ρB(A)]ω/σX = Aω/σX

By the definition of extended interpretation:

Aω/σX = Aω = Aω/σY
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• [{o1, . . . , on}]ω/σY = [ρB({o1, . . . , on})]ω/σX where {o1, . . . , on} ⊆ O. By
the definition of translation function ρB :

[ρB({o1, . . . , on})]ω/σX = [{o1, . . . , on}]ω/σX

According to the standard semantics:

[{o1, . . . , on}]ω/σX =
n⋃

i=1

oω/σX
i

By the definition of extended interpretation:

n⋃
i=1

oω/σX
i =

n⋃
i=1

oω
i =

n⋃
i=1

oω/σY
i

According to the standard semantics:

n⋃
i=1

oω/σY
i = [{o1, . . . , on}]ω/σY

• [CuC ′]ω/σY = [ρB(CuC ′)]ω/σX . By the definition of translation function
ρB :

[ρB(C u C ′)]ω/σX = [ρB(C) u ρB(C ′)]ω̂

According to the standard semantics:

[ρB(C) u ρB(C ′)]ω/σX = ρB(C)ω/σX ∩ ρB(C ′)ω/σX

By the inductive hypothesis:

ρB(C)ω/σX ∩ ρB(C ′)ω/σX = Cω/σY ∩ C ′ω/σY

According to the standard semantics:

Cω/σY ∩ C ′ω/σY = [C u C ′]ω/σY

• [¬C]ω/σY = [ρB(¬C)]ω/σX . By the definition of function ρB :

[ρB(¬C)]ω/σX = [¬ρB(C)]ω/σX

According to the standard semantics:

[¬ρB(C)]ω/σX = ∆ω/σX \ [ρB(C)]ω/σX

By the inductive hypothesis:

∆ω/σX \ [ρB(C)]ω/σX = ∆ω/σX \ Cω/σY

Since both extended interpretations agree on the active domain (∆ω/σX =
∆ω = ∆ω/σY):

∆ω/σX \ Cω/σY = ∆ω/σY \ [C]ω/σY

According to the standard semantics:

∆ω/σY \ Cω = [¬C]ω/σY

197



CHAPTER 6 FUNCTIONAL PROPERTIES

• [(≥ n R C)]ω/σY = [ρB((≥ n R C))]ω/σX , where R is an arbitrary role
expression (R→ P |P−, P ∈ P). By the definition of function ρB :

[ρB((≥ n R C))]ω/σX = [(≥ n R ρB(C))]ω/σX

According to the standard semantics:

[(≥ n R ρB(C))]ω/σX =
{
α|
∥∥∥Sω/σX

ρB(C),R(α)
∥∥∥ ≥ n} (6.10)

where Sω/σX

ρB(C),R(α) denotes the set of R-successors of element α belonging
to ρB(C) defined as:

Sω/σX

ρB(C),R(α) = {β|β ∈ ρB(C)ω/σX , 〈α, β〉 ∈ Rω/σX}

But, since the inductive hypothesis and the agreement of both structures
on the interpretation of role names (Pω/σX = Pω = Pω/σY for each P ∈
P), we have that:

Sω/σX

ρB(C),R(α) = {β|β ∈ Cω/σY , 〈α, β〉 ∈ Rω/σY}

In other words, we can conclude that:

Sω/σX

ρB(C),R(α) = Sω/σY

C,R (α)

Applying such result to Eq. 6.10, we have that:

[(≥ n R ρB(C))]ω/σX =
{
α|
∥∥∥Sω/σY

C,R (α)
∥∥∥ ≥ n}

Observing, according to standard semantics, that:

[(≥ n R C)]ω/σY =
{
α|
∥∥∥Sω/σY

C,R (α)
∥∥∥ ≥ n}

we can conclude the proof.

Given two binding schemas, we now consider the validity of the composed
one. The following results will help to establish the validity of a composed
binding, given the corresponding properties of composing ones.

Lemma 46. Given a world specification W and two valid binding schemas A
and B w.r.t. it, the binding schema A / B is also valid.

Proof. It follows immediately from the definition of valid binding schema: in
fact the former (B) is evaluated in a legal state ω w.r.t. W and an assignment
and, since it is valid, the result is also an assignment on which the latter (A)
can be evaluated resulting in a final consistently defined assignment.

Lemma 47. Given a world specification W, a binding schema B valid w.r.t. it
and a condition C, and a binding schema A valid w.r.t. W, the binding schema
A / B is also valid w.r.t. such a condition.

Proof. Given a world state ω and an assignment for B s.t. the condition is
satisfied w.r.t. them, the evaluation of the binding former binding schema results
into a new consistent assignment on which the latter can be evaluated.
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Given a binding schema B and a condition C s.t. it defined over the out-
put signature of the schema (U), we define the composed condition C / B as
the condition obtained simultaneously replacing each occurrence of condition
variables U ∈ U with the corresponding function in the schema B(U):

C / B , {ρB(C)|C ∈ C}

Given such a definition, applying properties established so far, we can also
conclude that:

Lemma 48. Given a world state ω, a condition C and binding schema B,
that can be composed with C, an input assignment σ for B, s.t. it is correctly
evaluated in ω into σ′, then C / B is satisfied in ω using σ iff C is satisfied in
ω using σ′.

Lemma 49. Given a world specification W, a binding schema B valid w.r.t. it,
and a binding schema A valid w.r.t. a condition C, the binding schema A / B
is also valid w.r.t. C / B.

Proof. Let ω and σ′ be resp. a world state and an assignment s.t. the binding
schema A is correctly evaluated, according to Lemma 48, since the binding
schema B is assumed to be valid, there exists an assignment σ on the input
signature of B, and hence of A / B, s.t. C / B holds in ω. Conversely, if
such a condition is satisfied, we can also conclude that also C is satisfied and,
consequently, that the binding schema A is consistently evaluated.

Given two conditions C = {C1, . . . , Cn} and C’ = {C ′
1, . . . , C

′
m}, having

disjoint signatures, the conjunction of such constraints is defined as:

C ∧C’ , {C ∪ C ′|C ∈ C, C ′ ∈ C’}

Applying the distributive and commutative properties of boolean operators,
from this definition we can easily obtain the following result:

Lemma 50. Given a world state ω, two conditions C and C’ and their assign-
ments σ and σ′, the condition C ∧C’ is satisfied in ω using σ ∪ σ′ iff both C
and C’ are satisfied in ω using resp. σ and σ′.

Theorem 79. Given a world specification W, a binding schema B valid w.r.t.
to a condition C, and a binding schema A valid w.r.t. a condition C’, the
binding schema A / B is also valid w.r.t. C ∧ (C’ / B).

Proof. Let ω be a world state and σ an assignment for the input signature of B
s.t. the condition C∧(C’ / B) holds in ω given σ. Since the binding schema B is
assumed to be valid w.r.t. C, we can conclude that is evaluated into a consistent
assignment σ′ and, applying Lemma 48 and 50, that also C’ holds in ω given
σ′. According to the hypothesis on the validity of A w.r.t. this condition, we
can finally conclude that also this binding schema is correctly evaluated and,
hence, the composed binding schema is valid.

On this foundation we can provide a criterion to check whether a service
can replace another one preserving the adequacy w.r.t. a given goal. Such
a criterion relies on the availability of both goal/service and service/service
bindings as assumed so far in the analysis of both adequacy and replaceability.
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Theorem 80. Let G be a goal, 〈SN , SO〉 be a pair of services, A be an interface
adapter XO to XN and B be binding from UG to XO, s.t.:

• the binding B is consistent w.r.t. the goal G and the service SO;

• the service SO is lO-adequate to achieve the goal G using the binding B,
where lO ∈ L;

• the interface adapter A is valid and preserves the accessibility.

If the service SN is lN -adequate to achieve the goal G using the binding A / B
and lO � lN , then the SN can replace the service SO preserving the adequacy
w.r.t the goal G.

Proof. To prove that SN is an adequacy-preserving replacement of SO w.r.t.
the goal G, we need to show that its adequacy level lN is at least the same of
SO. Since we have assumed that, using the binding A / B, we can determine
that its level lN � lO, in order to complete the proof, we have also to show that
this binding schema is well-founded w.r.t. the goal G and the service SN .

In terms of binding schema validity, we have that B is valid under the con-
dition HG, while A is valid under PO. Since the binding B is consistent, for
each world state ω and for each goal instantiation σU s.t. the condition HG

holds (ω / σU |= HG), we have that invocation preconditions of SO also hold in
ω (ω /B(ω, σU) |= PO). By hypothesis we have assumed that interface adapter
A is valid and it is s.t. that also invocation preconditions of SN hold in ω
(ω / A(ω,B(ω, σU)) |= PN ) using the activation assignment obtained by the
evaluation of the binding schema. In other words, we have that the service SN

is activable using the binding schema A / B, but this composition is also valid
under the condition HG. In fact, according to Theorem 79, the binding schema
A / B must be valid under the condition HG ∧ (PO / B), but, given the consis-
tency assumption on B w.r.t. SO, we have that the second conjunct is logically
implied by HG. We have shown that the binding A / B is valid w.r.t. HG and
it is suitable to be employed on SN as consistent goal binding schema.

Employing this property is easy to set up a procedure to check the replace-
ability among services: in fact it turns out that is sufficient to determine if
the replace candidate service can achieve the same adequacy level using the
composed binding. Moreover, such a property provides us also a way to effec-
tively compute such a binding. Complexity results can easily extended this case
too. Essentially the problem complexity depends upon the minimum level of
adequacy to preserve according to results presented in Table 6.2.

Remark 41. The procedure can be applied both considering or ignoring the
service effect repairs, since this aspect is completely orthogonal. However, we
point out that repair sets RO and RN , as in other cases, are distinct, because
they depend both on domain and service specifications.

6.3 Functional Similarity

A more general and articulated notion than (possibly mutual) service replace-
ability is the functional similarity of services. Roughly speaking, we are inter-
ested in checking whether two given services S1 and S2 of a community perform
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a similar task, as well as if their applicability contexts (e.g., invocation scope
or coverage) are different. This concept is very useful so that a set of distinct
services can be clustered into functional homogeneous groups, which are not
strongly equivalent according to the notion previously stated.

Considering some implemented frameworks (e.g., DCOM, CORBA or XML
web services), we are interested in the semantic characterization of the notion
of components implementing the same functional contract. We remark that, ac-
cording to such a kind of system agreement, functional comparable components
are generally denoted by the fact that they expose the same interface (e.g., IDL
or WSDL port-type). But this notion is too weak, since it relies only upon a
syntactical specification and the only logical inferable consequence is that dif-
ferent components implementing the same interface are only able to establish
the same enactment protocol or, in other words, that they are able to “speak”
in the same language.

The assumption that such kinds of software components are performing
an equivalent functional task implicitly holds only according to a development
agreement among the community members. In fact, generally interface-based
frameworks prescribe that operation signatures should be, at least informally,
annotated with pre-conditions and effects specification in order to character-
ize the service contract. Also so-called static approaches require a substantial
agreement on that effect reification concepts. In a scenario where a central au-
thority rules the service contracts and interfaces in a top-down manner, such a
kind of agreement is convincingly enforced, but in the case where the service
community is built bottom-up from the actual availability of independently
implemented functionalities8, a more powerful notion, which relies only on an
agreement upon the specification language, is required. Notably, considering
the evolution of e-government systems, despite a top-down approach should be
more conceivable, the implemented service communities have been developed so
far in a bottom-up manner, at least w.r.t. functional aspects.

The functional comparison can be performed upon different criteria: in par-
ticular, we now provide a notion of functional comparison that allows to com-
pare services that are distinguishable at the object level. It may be useful, e.g.,
when service activation scope definitions involve some domain objects (e.g., ge-
ographical names). More sophisticated definitions that keep into account also
intensional level mismatch can be devised in a similar way. W.l.o.g., we as-
sume that input and output parameters of the comparing services are the same:
in fact, as shown in previous section if it this condition does not hold we can
introduce a suitable interface adapter.

The comparison of service modulo the object-level characterization can be
carried out in different manners: e.g., retracting the unique names assumption
and introducing some links among different interpretation structures. However,
in this case we can easily notice that object-level knowledge play a role only
in this specific fragment of problem specification: in particular, the extensional
knowledge (or in other words, the knowledge explicitly involving objects) is
relegated to the ABoxA part of the KBW = 〈T ,A〉 and in the queries employed
into various constructs of the service specification (e.g., preconditions, effect
arguments). So, instead to renounce to the unique names assumption, we prefer
to adopt a strategy based on the search of world/service specification space of

8That are distinct also in terms of operation signatures.
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suitable instances accordingly altering/replacing object names.

Remark 42. Intuitively, the devised solution aims at implementing an heuristic
criterion that allows to consider as functional comparable (or similar) entities
(i.e., service specifications) that should turn out to be quite similar into a slightly
different context (i.e., world specification).

More specifically, we consider as functional comparable services that under
suitable conditions, possibly w.r.t. world specifications that differs only by the
extensional characterization, can be taken as replacement. In this way, more-
over, the service replaceability turns out to be a special case of the functional
comparability, requiring the agreement on the extensional level too.

Since the extensional level knowledge can be expressed only w.r.t. to object
names O we can adopt the following construct to denote suitable specification
transformations:

Definition 102 (Object renaming). Given an object alphabet O, an object
renaming ξ is a total function O 7→ O, that arbitrary maps each object name to
another object name.

Such a kind of function is generally expressed a substitution object and
represented as:

ξ = {a/ξ(a), b/ξ(b), . . . z/ξ(z)}

where a, b, . . . , z are object names in O, and ξ(·) denotes the evaluation of the
function on the given argument. Generally, unaltered names are omitted from
this representation.

We can also easily extend such a definition to ALCQIO language as the
following:

ξ(A) , A

ξ(C u C ′) , ξ(C) u ξ(C ′)

ξ((./ n R C)) , (./ n R ξ(C))

ξ({o}) , {ξ(o)}
ξ(¬C) , ¬ξ(C)

ξ(o : C) , ξ(o) : ξ(C)

ξ((o, o′) : R) , (ξ(o), ξ(o′)) : R

ξ(A) ,
⋃

o:C∈A
ξ(o : C) ∪

⋃
(o,o′):R∈A

ξ((o, o′) : R)

Remark 43. It is important to point out that since the cardinality of object
alphabet is finite also the cardinality of suitable object renaming function is
finite and that previous properties are decidable in this framework.

Lemma 51. Given a domain specification 〈A,P,O〉, there are at most O
(
2‖O‖

2
)

distinct object renaming functions.

Proof. The claim follows immediately from the observation that there exists
nn distinct total functions mapping a domain of n elements on itself, assuming
n = ‖O‖ and that nn = 2n·log2n ≤ 2n2

.
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Definition 103 (Renamed world specification). Given a domain specification
〈A,P,O〉, an object renaming ξ over O and a world specification W = 〈T ,A〉
defined on this domain, we define as renamed world specification the knowledge
base Wξ = 〈T , ξ(A)〉 obtained applying the object renaming function to every
assertion in the ABox.

Given an arbitrary world specification and an object renaming function the
obtained renamed specification can turn out to be not consistent w.r.t. the
TBox constraint, hence we need to refine the definition so that only a consistent
renaming is allowed.

Definition 104 (Consistency preserving object renaming). Given a domain
specification 〈A,P,O〉 and a consistent world specification W = 〈T ,A〉 defined
on this domain, an object renaming ξ over O is consistent w.r.t. them or it pre-
serves the consistency if the renamed world specification Wξ is also consistent.

We now apply the object renaming also to service specification.

Definition 105 (Renamed e-service). Given a domain specification 〈A,P,O〉,
an object renaming ξ over O and an e-service specification S = 〈X,Y,P, E〉, the
renamed e-service specification Sξ is an e-service specification on the same sig-
nature obtained from S applying the renaming function ξ to every precondition,
branching and effect argument query expressed as ALCQIO-concept expression.

As done for world specification, we can also check whether the object re-
naming preserves the service semantic properties.

Definition 106 (Accessibility preserving object renaming). Given a domain
specification 〈A,P,O〉, a consistent world specification W and an accessible
service S both defined on this domain, an object renaming ξ over O preserves
the accessibility if the renamed service specification Sξ is also accessible.

Analogous definitions can be provided for other service properties (effect
consistency, validity and repairability).

Remark 44. We notice that, since the object renaming involve only the asser-
tions of the world specification and the concept expressions in the service spec-
ification, it has no impact on the repair search strategy that, instead, depends
upon the domain specification and service signatures.

Definition 107 (Service functional comparability). Given a domain specifi-
cation 〈A,P,O〉, a consistent world specification W and a pair of valid (or
repairable) services SO and SN , we say that SN is functionally comparable with
SO if there exists a consistent object renaming ξ s.t. it preserves the valid-
ity (resp. repairability) of given services and Sξ

N is a reachability preserving
replacement of Sξ

O.

Definition 108 (Service functional similarity). Given a domain specification
〈A,P,O〉, a consistent world specification W and a pair of valid (or repairable)
services SO and SN , we say that SN and SO are functionally similar if they are
mutually functional comparable.

This approach seems to be quite interesting in e-government scenarios, where
different administrative department authorities provide similar services to dif-
ferent scopes, generally denoted in some extensional way (i.e., a service provided
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by some local public administration is reserved only to subjects resident in its
own jurisdiction). It turns also interesting in e-commerce applications, e.g., in
the management of supply-chain, since service providers can define a restricted
served scope, not necessarily on geographic basis.

Example 14. Given the service S1 of Example 2, a simple functional equivalent
service S4 (under the object renaming ξ = {town2/town1}) is the following:

X = {x1, x2}
Y = ∅
P = x1 u ∃residentIn. {town2} and x2 u Town and not x2 u {town2}
E =

{
−residentIn(x1,∃residentIn−.x1),+residentIn(x1, x2)

}
∪ {−registeredIn(Vehicle u ∃owner.x1, {town2})}
∪ {+registeredIn(Vehicle u ∃owner.x1, x2)}

In this case, once the object renaming has been applied, the resuling service is
syntactically equal, module possible rewriting of expression into equivalent forms
(e.g., applying algebraic properties of logical operators), to the comparing one,
but in the general case logical also consequences of the specification must be kept
into account accordingly. Moreover these services are functionally equivalent,
despite they are not strongly equivalent.

Example 15. We consider the world specification W of Example 9 enriched
with the following axioms:

Grocery v Shop

ClosedShop ≡ ¬∃authorizedFor.>

where Grocery and OpenShop are obviously new concept names, and the following
pair of services T1:

X = {x}
Y = ∅
P = x u Grocery u ClosedShop u (∃locatedIn. {town1}) u (∃owner.∃residentIn. {town1})
and not (∃owner−.x) u (∃authorizedFor.x)

E =
{{

+authorizedFor(∃owner−.x, x),−ClosedShop(x)
}
, ∅
}

and T2:

X = {x}
Y = ∅
P = x u Shop u (∃locatedIn. {town2}) and not (∃owner−.x) u (∃authorizedFor.x)

E =
{{

+authorizedFor(∃owner−.x, x)
}
, ∅
}

Roughly speaking T1 is a service (eventually) issuing authorizations to the owner
for a special kind of shop in town town1 for its inhabitants, assuming that it is
closed, since none has been previously authorized, while T2 is a service issuing
the same kind of authorization for the activity located in town town2. These
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services are accomplishing a quite similar, but not exactly the same, kind of
task, despite they are not directly replaceable. In fact, while T1 is functionally
comparable to T2, but the converse is not true and, hence, they are not similar.
Moreover the basic authorization service T can replace both of them.

Given complexity results stated so far we are also able to provide a com-
plexity upper bound for the functional comparability decision problem, given a
candidate interface adapter9.

Theorem 81. Given a domain specification 〈A,P,O〉, a consistent world spec-
ificationW, a pair of valid (resp. repairable) services SO and SN , and a suitable
interface adapter A, the problem of checking if the service SN is functionally
comparable with SO is in NPNEEXP.

Proof. We prove the claim showing how querying a suitable oracle, we can design
a non-deterministic machine solving the problem in polynomial time.

According to Theorem 76 (resp. 78), employing a coNEEXP-problem ora-
cle Reachability(W, SO, SN , A) (resp. RepReachability(W, SO, SN , A)) it is pos-
sible to check whether the service SN can replace the service SO using the
adapter A w.r.t. W, while, according to Theorem 7, an EXP-problem oracle
Consistency(W) can check whether the world specification is consistent, anal-
ogous oracles can be defined to check other service properties (accessibility,
effect consistency, validity/repairability). We can, consequently, define a new
non-deterministic automaton that initially guesses a possible renaming ξ from
a finite search space (see Lemma 51), computes the renamed version of given
specification (this step is clearly linear), then checks whether the renaming has
preserved the interesting properties invoking the suitable oracle and, in case of
successful verification, that the service replacement is correct using Reachability
(resp. RepReachability) on Wξ, Sξ

O, S
ξ
N , A

ξ. (possibly considering the repair
search spaces). The devised automaton clearly operates in non-deterministic
polynomial time once a coNEEXP-problem oracle is available10, hence its com-
plexity is at most NPNEEXP.

The previous results assume that the interface adapter w.r.t. checking the
replacement has to provided as input to the problem, but since we are already
paying for a search step for solve the decision problem, we can exploit the guess-
ing step also to compute a candidate interface adapter if we can impose some
syntactical restriction in order to bound the search to a finite space. Moreover,
given the definition of query language, the following property ensures that the
complexity class is untouched.

Proposition 3. Given a concept alphabet A, a role alphabet P and an object
alphabet O and an integer value h ∈ N, there exist at most O

(
n2h
)

distinct
possible ALCFIO expression on such alphabets having a syntax tree of height
less or equal h, where n = ‖O‖+ ‖A‖+ ‖P‖.

9In the following we use relative complexity class notation according to the approach
introduced in [LL76].

10We assume that also the generation of expanded formula, having a length exponentially
bounded in the problem input, is delegated to the oracle itself. Generally speaking, the
communication overhead between automata is ignored.
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In other words, if we set the parameter h, the number of possible query
expressions is polynomial bounded w.r.t. the size of the problem instance, even
the polynomial degree can be very high. We can consequently adjust the com-
parability definition so that also this aspect is considered. We also limit the
ability to express arbitrary quantified range restrictions to only functional ones,
but it is not a so significant limitation in the query language as in the constraint
one. Roughly speaking, ALCFIO a specialization of ALCQIO s.t. the concept
expression language is:

C,C ′ −→ A | ¬C | C u C ′ | (./ 1R C) | {o}

Obviously every ALCFIO expression is also in ALCQIO, hence results shown
so far are preserved.

Definition 109 (h-bounded functional comparability). Let h be an integer
value, given a domain specification 〈A,P,O〉, a consistent world specification
W and a pair of valid (or repairable) services SO and SN , we say that SN is
h-functionally comparable with SO if there exists a consistent object renaming ξ
s.t. it preserves the validity (resp. repairability) of given services and Sξ

N is a
reachability preserving replacement of Sξ

O using a suitable interface adapter A
s.t. the height of each query ALCFIO-expression tree is at most h.

So, for a given h, the following results holds:

Corollary 19. Given a domain specification 〈A,P,O〉, a consistent world spec-
ificationW, an integer value h ∈ N, and a pair of valid or repairable services SO

and SN , the problem of checking if the service SN is h-functionally comparable
with SO is in NPNEEXP.

Proof. The claim follows extending the automaton employed in the proof of
Theorem 81 simply adding also the guessing of an interface adapter A whose
size is, according to Proposition 3, polynomially bounded.

A weaker form of such kind of property can be obtained combining the do-
main mapping with a service replaceability notion. In other words, two services
are functionally similar w.r.t. a user goal G if, given an accordingly defined a
mapping function, former is a suitable replacement for the latter, w.r.t. G. As
in previous cases, the ability to reason considering the user goal enables us to
implement more refined analysis, since we are able to filter out irrelevant service
effects according to user’s perspective.

Example 16. Considering the scenario shown in Example 15 and the following
service T3 as variation of the service T2:

X = {x}
Y = ∅
P = x u Shop u (∃locatedIn. {town2}) and not (∃owner−.x) u (∃authorizedFor.x)
E = {E1, E2}
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where E1 and E2 are two conditional effects defined as following:

E1 =

{
{+authorizedFor(∃owner−.x, x)} if x u Grocery

∅ otherwise

E2 =

{
{+authorizedFor(∃owner−.x, x)} if x u Grocery

{+authorizedFor(∃owner−.x, x)} otherwise

Roughly speaking, in case the shop x belongs to a particular class, the authoriza-
tion is automatic (e.g., there exists a kind of market deregulation). Obviously
this service cannot be considered as functional comparable with T1: in fact, it
does not preserve the reachability property, since it does never reject the client
request. But, it is worth noticing that the requestor is not asking for a reject
and its probably described by the following goal:

U = {u}
H = u u Grocery u ClosedShop u (∃locatedIn. {town1})
u (∃owner.∃residentIn. {town1}) and not (∃owner−.u) u (∃authorizedFor.u)

R =
{
+authorizedFor(∃owner−.u, u)

}
In fact, w.r.t. such a goal the service adequacy turns to be strong uniform, so it
is preserved considering the weak uniform adequacy of T1. In other words, the
service T1 is functionally comparable to T3 relative to the given goal.

In order to keep also user goals into account, we need to extend the object
level transformation also to goal primitives.

Definition 110 (Renamed execution goal). Given a goal specification G =
〈U,H,R〉, a domain specification 〈A,P,O〉, and an object renaming ξ over O,
the renamed goal specification Gξ is a goal specification on the same signature
obtained from G applying the renaming function ξ to every condition query
expressed as ALCQIO-concept expression.

A suitable object renaming must preserve the admissibility of the renamed
goal:

Definition 111 (Admissibility preserving object renaming). Given a domain
specification 〈A,P,O〉, a consistent world specification W and an admissible
goal G both defined on this domain, an object renaming ξ over O preserves the
admissibility if the renamed goal specification Gξ is also admissible.

We can now provide a refined notion of functional comparison among service
specification:

Definition 112 (Functional comparability w.r.t. a goal). Given a domain
specification 〈A,P,O〉, a consistent world specification W, an admissible goal
G, and a pair of valid (or repairable) services SO and SN , we say that SN

is functionally comparable with SO w.r.t. G if there exists a consistent object
renaming ξ s.t. it preserves the validity (resp. repairability) of given services,
the admissibility of G, and Sξ

N is an adequacy preserving replacement of Sξ
O

w.r.t. Gξ, possibly keeping into account the effect repair strategy.
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Analogous complexity results also hold for the verification of this kind of
functional similarity:

Theorem 82. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, a pair of valid services SO and SN , an admissible goal G s.t. SO

is adequate using a binding schema B, and a suitable interface adapter A, the
problem of checking if the service SN is functionally comparable with SO w.r.t.
G is in NPNEXP.

Proof. Assuming that an oracle for NEXP-problem was available, we prove the
claim showing a non-deterministic automaton that solves this decision problem
running in polynomial time, hence in NPNEXP. In fact, given a problem instance,
this automaton first guess a possible object renaming ξ, then it verifies whether
such renaming results into consistent world specification, legal service specifi-
cations, and suitable interface adapters. Finally, the automaton check if the
resulting service Sξ

N can replace Sξ
O using Aξ and Bξ w.r.t. Wξ preserving the

adequacy level: according to Theorems 66 and 80 this task can be accomplished
using an oracle for NEXP or coNEXP language that first computes the original
service’s adequacy level lo testing the various conditions, then it checks if the
replacing service has the same level. Clearly this automaton solve the decision
problem operating in linear time.

Theorem 83. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, a pair of repairable services SO and SN , an admissible goal G s.t.
SO is adequate a binding schema B, and a suitable interface adapter A, the
problem of checking if the service SN is functionally comparable with SO w.r.t.
G is in NPNEEXP.

Proof. The proof is quite similar to previous case, excepting it relies on results
concerning goal adequacy under repairs (see Theorems 71, 72, and 80).

Also the bounded comparability can be extended to this case, accordingly
adjusting the definition. As in the case of bounded functional comparability,
complexity upper-bounds are preserved.

Definition 113 (h-bounded goal relative functional comparability). Let h be
an integer value, given a domain specification 〈A,P,O〉, a consistent world
specificationW, an admissible goal G, and a pair of valid (or repairable) services
SO and SN , we say that SN is h-functionally comparable with SO w.r.t. G if
there exists a consistent object renaming ξ s.t. it preserves the validity (resp.
repairability) of given services, the admissibility of G, and Sξ

N is an adequacy
preserving replacement of Sξ

O w.r.t. Gξ, possibly keeping into account the effect
repair strategy, using a suitable interface adapter A s.t. the height of each query
ALCFIO-expression tree is at most h.

Given the Proposition 3, we can add an interface adapter guessing step to
automata previously designed, also in this case the following claims hold:

Corollary 20. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, an integer value h ∈ N, a pair of valid services SO and SN , and an
admissible goal G s.t. SO is adequate using a binding schema B, the problem of
checking if the service SN is h-functionally comparable with SO w.r.t. G is in
NPNEXP.
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Corollary 21. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, an integer value h ∈ N, a pair of repairable services SO and SN ,
and an admissible goal G s.t. SO is adequate a binding schema B, the problem
of checking if the service SN is h-functionally comparable with SO w.r.t. G is
in NPNEEXP.

Generally speaking, the service functional similarity can be assessed consid-
ering as distinct analysis dimensions the object renaming generation function
and the replacement criterion. While the latter defines what is relevant in terms
of service effects, the former specifies when different objects can be considered
as similar, e.g., given a partition of O into equivalence classes we can generate
only renaming s.t. an object o is replaced by another element of its class [o].
As observed for the repair analysis, the search space can be accordingly shaped
w.r.t. application requirements.

Remark 45. Mutual service replaceability and functional similarity are slightly
interchangeable concepts11: but while in the former case the replacing service
can be invoked in place of the original one for the same enactments, in the
latter we invoke the services in different contexts (i.e., world specification) in
order to achieve, possibly different, but homologous, goals. Generally speaking,
the functional similarity concept is suitable to model dynamic binding patterns,
while service replacement is more appropriate for dynamic addressing and ser-
vice provider failure management.

6.4 Service Template

A further generalization, stemming from the analysis of the functional similar-
ity of e-services, is the introduction of a service template primitive, so that we
are able to provide also a form of abstraction w.r.t. concrete deployments in a
top-down manner, as the previous approach is essentially bottom-up. In terms
of methodology, while we employ the bottom-up analysis in the assessment of a
service community in order to cluster similar features, the top-down approach
turns to be useful, e.g., in the construction of service directory or in the imple-
mentation of run-time resolution and binding mechanism, which according to
each enactment properties selects the most suitable available service (if any).

So far we have pointed out that the extensional characterization is a typical
aspect of service-oriented systems, in particular large scale ones (e.g., inter-
enterprise B2B integration, e-government cooperation platform), while it is not
extremely relevant into component-oriented systems (i.e., intra-enterprise inte-
gration), where a strong organization model is generally enforced and where
only a limited degree of autonomy exists and the overlap of competences among
different organization units is avoided. As a consequence, the formalization at-
tempts generally ignore the extensional part12, while in the present approach it
play a central role. Moreover, we employ a definition of service template that
essentially provide a form of abstraction w.r.t. the object level.

11The similarity/comparability relation actually generalizes the repairability one.
12In terms of DL knowledge engineering it is essentially represented by the object alphabet

and the ABox, but other languages provide similar constructs (e.g., constant names, ground
facts).
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Now we introduce some primitive constructs in order to provide the definition
of service template. Template parameters essentially range over object alphabet
of a given domain specification and it can be employed instead of object names
in query definitions.

Definition 114 (Template parameter assignment). Given a set of template
parameter names Z, a domain specification 〈A,P,O〉, an assignment σZ is a
function mapping a name in Z to an element of O.

Definition 115 (Parameterized query template). Given a domain specification,
a set of template parameter names Z, and a finite set of variable names V,
distinct from domain alphabets, a parameterized query template QZ(V) is an
arbitrary ALCQIO-concept expression built on the alphabet 〈A∪V,P,O∪Z〉.

Generally we can define a fine grained approach to query manipulation,
introducing:

an abstraction operator, that given a query or query template, an object
name and a parameter name, returns a query template s.t. each occurrence
of the object name has been replaced by the parameter name;

an application operator, that given a query template, a parameter name and
an object name, return a query template or a query s.t. each occurrence
of the parameter name has been replaced by the object name.

According to this approach, a query is a particular template having no parameter
name occurrences in its definition.

Definition 116 (e-service template). Given a domain specification 〈A,P,O〉,
an e-service template T is a quintuple formed by:

• a finite non-empty set of parameter names ZT ;

• a (possibly empty) finite set of input variable names XT ;

• a (possibly empty) finite set of output or instantiation variable names YT ;

• a (possibly empty) finite set of invocation precondition constraint templates
PT

• a finite non-empty set of conditional effect templates ET .

The definition of precondition constraint templates and conditional effect
templates are similar to ones provided at pages 57, 58, and 109, excepting that
they are expressed using query templates over ZT instead of (ground) queries.

Definition 117 (Query template grounding). Given a query template QZ(V)
and a template parameter assignment σZ we define the grounding or instanti-
ation of the template over the assignment the query Q(V) obtained replacing
simultaneously each occurrence of template parameter Z ∈ Z in the expression
with the assigned value σZ(Z).

Definition 118 (e-service template grounding). Given an e-service template
T and a template parameter assignment σZ over ZT , we define the grounding
or instantiation of the template over the assignment the e-service specification
S = T (σZ) s.t.:
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• XS = XT and YS = YT ;

• PS and ES are obtained from PT and ET by grounding every query template
over σZT

.

Since the object alphabet is finite, also the set of possible grounding of
a template is finite, leading to the decidability of various semantic properties
as we show in the following. This is essentially a consequence of the open-
world assumption, since, while we are allowing for an infinite, even countable,
interpretation universe U, the extensional part the specification (i.e., object
names and the ABox) states only the incomplete and finite knowledge about
the problem that we are interested to keep into account.

Proposition 4. Given a set of object names O and a set of template parameter
Z the number of possible distinct assignments is ‖O‖‖Z‖.

Moreover, not every possible grounding assignment is interesting in this sce-
nario, since we can provide a stronger selection criterion, based on the semantic
characterization of functional similarity.

Definition 119 (Template service community). Given a domain specification,
an e-service template T , and a finite set of template assignments Σ over ZT ,
we define as template service community S = T (Σ) the community of e-service
obtained grounding T using every assignment in Σ.

Among these communities we are interested into some specific ones:

Definition 120 (Normal template service community). A template service com-
munity T (Σ) is normal iff, let 〈S1, S2〉 ∈ T (Σ) × T (Σ) be a pair of community
elements, they are functionally similar.

In fact, despite two service specifications have been obtained instantiating
the same template, they are not necessarily functionally comparable or similar,
since not every parameter assignment pairs can be composed obtaining a suitable
object renaming. Moreover, we can provide a simple sufficient condition to check
this property.

Theorem 84. Given a domain specification, an e-service template T , and a
finite set of template assignments Σ over ZT , the template service community
S = T (Σ) is normal if the following conditions hold:

• the assignments in Σ are injective;

• the assignment codomain is disjoint from the set of object names involved
in query templates in T .

Proof. This claim follows from these observations:

1. the injectivity of assignment ensures that these functions are invertible,
so given an occurrence o of an object name into a query, it is at most
associated with a variable name Z;

2. the disjoint property of assignment codomains and active alphabet in-
volved in the query definition ensures also that, given an occurrence o of
an object name into a query, or there exists a variable Z s.t. σZ(Z) = o
or this occurrence was already defined in the template T .
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Consequently, we observe that, let σ1 and σ2 be the assignments employed to
instantiate S1 and S2 from T , we can use the object renamings:

ρ1 = {σ1(Z)/σ2(Z)|Z ∈ Z}
ρ2 = ρ−1

1

to prove that these services are functionally similar.

As previously done for e-service specification we can now complete the anal-
ysis defining the corresponding semantic properties and providing an effective
decision procedure. In particular, as we need to verify is a given service specifi-
cation is accessible, consistent, valid/repairable, we need also to check whether
a service template, given a world specification W, can be instantiated or, in
other words, there exists at least an admissible service obtained from it that is
legal according to the previous definitions.

Definition 121 (Legal e-service template). Given a domain specification, a
service template T and a world specification W, we say that the template is
legal iff there exists at least a service S obtained from it s.t. it is legal w.r.t. W.

Such property can be refined also to keep into account a specific set of
template parameter assignments Σ according to application requirements. Now,
we can decompose this property into more foundational ones, providing the
following definitions:

Definition 122 (Accessible e-service template). Given a domain specification,
a service template T and a world specification W, we say that the template is
accessible iff there exists at least a service S obtained from it s.t. it is accessible
w.r.t. W.

Definition 123 (Non-uniform template consistency). Given a domain speci-
fication, an accessible service template T and a world specification W, we say
that the template is non-uniformly consistent iff there exists at least a service S
obtained from it s.t. it is accessible and the effect specifications are consistently
defined w.r.t. W.

Definition 124 (Uniform template consistency). Given a domain specification,
an accessible service template T and a world specification W, we say that the
template is uniformly consistent iff for each accessible service S obtained it, the
effect specifications are consistently defined w.r.t. W.

Definition 125 (Non-uniform template validity). Given a domain specification,
a non-uniformly consistent service template T and a world specification W, we
say that the template is non-uniformly valid iff there exists at least a service S
obtained from it s.t. it is accessible, consistent and valid w.r.t. W.

Definition 126 (Uniform template validity). Given a domain specification, a
uniformly consistent service template T and a world specification W, we say
that the template is uniformly valid iff for each accessible service S obtained it,
it is valid w.r.t. W.

Definition 127 (Non-uniform template repairability). Given a domain specifi-
cation, a non-uniformly consistent service template T and a world specification
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W, we say that the template is non-uniformly repairable iff there exists at least
a service S obtained from it s.t. it is accessible, consistent and repairable w.r.t.
W.

Definition 128 (Uniform template repairability). Given a domain specifica-
tion, a uniformly consistent service template T and a world specification W,
we say that the template is uniformly repairable iff for each accessible service S
obtained it, it is repairable w.r.t. W.

Example 17. Considering the service S1 introduced in Example 2 and sub-
sequently modified, since in its definition is cited an object name (town1), it
is possible to employ the abstraction operator to generate the following service
template:

U = {u}
X = {x1, x2}
Y = ∅
P = x1 u ∃residentIn.u and x2 u Town and not x2 u u
E =

{
−residentIn(x1,∃residentIn−.x1),+residentIn(x1, x2)

}
∪ {−registeredIn(Vehicle u ∃owner.x1, u)}
∪ {+registeredIn(Vehicle u ∃owner.x1, x2)}

Instantiating the template using the assignment {u/town1} will result into the
service S1 itself (or into an equivalent version), but applying the assignment
{u/town2} we obtain a similar version that has a different coverage Stown2

1 :

X = {x1, x2}
Y = ∅
P = x1 u ∃residentIn. {town2} and x2 u Town and not x2 u {town2}
E =

{
−residentIn(x1,∃residentIn−.x1),+residentIn(x1, x2)

}
∪ {−registeredIn(Vehicle u ∃owner.x1, {town2})}
∪ {+registeredIn(Vehicle u ∃owner.x1, x2)}

Extending the specification W adding more other Town instances, we can gen-
erate a whole community of residence change services, one for each town. In
this case, since object are intensionally indistinguishable (i.e., the interpretation
substructures are isomorphic), all template instances share the formal proper-
ties, so it is possible to reduce the analysis of the template to the analysis of a
single representative instance.

Starting from previous definitions, considering results proved so far, we can
easily design automata able to solve the related decision problems, providing an
upper-bound of the computational complexity.

Theorem 85. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, a service template T , the problem of checking if the template is
accessible w.r.t. W is in NPNEXP.

Proof. In order to prove the claim, we need to show that a non-deterministic
automaton using an oracle for a NEXP-language can solve a problem instance in
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a polynomial time. Such an automaton simply generate (guess) every possible
instantiation assignment σ that, according to Proposition 4, are finite and then
testing each one grounding the template S = T (σ) and checking the service using
the oracle for solve the satisfiability problem obtained applying Corollary 3, that
according to Theorem 18 can be solve in NEXP: if the satisfiability has been
verified for an assignment σ, the automaton answers true, otherwise false. Such
an automaton clearly is able to check if the given template is accessible, since
at least a computation branch has to returns true iff the template accessible,
and also it operates in polynomial time.

Theorem 86. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, a service template T , the problem of checking if the template is
non-uniformly consistent w.r.t. W is in NPNEXP.

Proof. As in the previous case, in order to prove the claim, we need to show that
a non-deterministic automaton using oracles for a coNEXP-language can solve
a problem instance in a polynomial time. Such an automaton simply generate
(guess) every possible instantiation assignment σ that, according to Proposition
4, are finite and then testing each one grounding the template S = T (σ) and
checking the service using the oracle for solve the satisfiability problem obtained
applying Corollary 3 (the service must be also accessible) and, hence, the en-
tailment problem obtained from the Theorem 19. If both tests are successfully
passed the automaton returns true, otherwise false. According to Theorem 20,
a coNEXP-problem oracle can solve these reasoning tasks, hence the automaton
operates non-deterministically in polynomial time. This automaton effectively
solve the problem since the template is non-uniformly consistent iff there exists
at least an assignment σ s.t. the corresponding branch answers true.

Theorem 87. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, a service template T , the problem of checking if the template is
non-uniformly valid w.r.t. W is in NPNEXP.

Proof. The proof of this claim is quite similar to the previous one, excepting it
relies on Theorems 47 and 48.

Theorem 88. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, a service template T , the problem of checking if the template is
non-uniformly repairable w.r.t. W is in NPNEEXP.

Proof. The proof of this claim is quite similar to the previous one, excepting
it relies on Theorems 52 and 53 and the automaton requires a more powerful
oracle (coNEEXP-problem) to solve the instance.

Theorem 89. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, a service template T , the problem of checking if the template is
uniformly consistent w.r.t. W is in coNPNEXP.

Proof. In this case we prove the claim showing how the complementary problem
UnifConsistency can be solved in NPNEXP and, consequently, UnifConsistency ∈
coNPNEXP. A template is not uniformly consistent iff there exists at least a
grounding assignment s.t. the resulting service is accessible w.r.t. W, but
the effect specification is not consistent. Since the finite search space, we can
adopt a guess-and-test strategy as done in the proof of Theorem 86, employing
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the same automaton simply negating the output value. The automaton for
UnifConsistency clearly operates in non-deterministic polynomial time once a
suitable oracle is provided, thus the problem UnifConsistency is solvable in coNP
given the same oracle.

Theorem 90. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, a service template T , the problem of checking if the template is
uniformly valid w.r.t. W is in coNPNEXP.

Proof. The proof of this claim is quite similar to the previous one, excepting it
relies on an automaton to solve the complementary problem UnifValidity.

Theorem 91. Given a domain specification 〈A,P,O〉, a consistent world spec-
ification W, a service template T , the problem of checking if the template is
uniformly repairable w.r.t. W is in coNPNEEXP.

Proof. Also in this case we adopt the same strategy, devising a NPNEEXP au-
tomaton to solve the complementary problem UnifRepairability.

Complexity upper bound for the verification of template semantic properties
are also summarized in Table 6.3. As shown in Example 17, in the case of service
template generated abstracting a ground service (a seed), assuming a uniform
(i.e., isomorphic) extensional specification (i.e., the ABox), it is possible to easily
generalize the seed properties to the whole community.

Non-uniform Uniform

Consistency NPNEXP coNPNEXP

Validity NPNEXP coNPNEXP

Repairability NPNEEXP coNPNEEXP

Table 6.3: Verification complexity upper-bounds for template properties

6.5 Conclusions

In this chapter we have analyzed a variety of formal properties that are relevant
in different phases of the life-cycle of a service-oriented system leveraging on the
present framework.

According to the formal semantics that we have adopted, we are now able
to show that reasoning about such a kind of properties is actually decidable,
even though it can be very complex in highly expressive scenarios. The analysis
of the replaceability has shown that the assessment performed w.r.t. the state
space accessibility relation is not very satisfactory in client-driven applications
(i.e., a service could not be able to reach a state that is not required by any
client), so we have refined this property introducing a compatibility comparison
w.r.t. the adequacy of services to achieve a given goal. The approach based
on service templates has shown a complexity blow-up, but we remark that such
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a kind of constructs are essentially involved in the design phase, while pre-
computed results can be reused at run-time, reducing the requirements for an
on-line reasoner.

Moreover, we have analyzed these properties considering also the repairabil-
ity of service effects. We point out that, as in the case of correctness analysis, the
most considerable impact on the computational complexity of these problems is
due to the necessity of keeping into account also possible repair strategies.
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CHAPTER 7

Language Extensions

In this chapter we describe some extensions to the specification languages (i.e.,
constraints, queries) in order to provide a more expressive analysis framework.
In particular, we are interested in language constructs related to the role spec-
ification and in the ability to deal with dynamic constraints (i.e., constraints
enforced on the system evolution path rather than on the system state).

7.1 Extended Role Constructs

Expressive Description Logic language like ALCQI and ALCQIO are known to
be able to model complex concept related properties, but they are weaker in the
definition of properties related to roles. In fact, simply from the language syntax
we can assess that while the concept expression language is very powerful, the
role expression language is rather restricted (i.e., only the inverse role construct
is provided).

However, there exist several language extensions (see [HSG04] for a survey)
that aim to enrich the knowledge expression language with suitable primitives.
In particular, such approaches extends the definition of the KB introducing:

• the ability to express complex role term (e.g., boolean composition, transi-
tive closure, path composition) or, in other words, to enrich the expression
language;

• the ability to express role based axioms (RBox) or to enrich the intensional
part of the knowledge base.

Generally speaking, role-enriched languages, despite the expressive power, get
at loosing some interesting and useful semantic and computational properties.
Historically, first generation knowledge representation systems as KL-ONE al-
lowed the user to define even more complex role-related axioms, but they are
simple undecidable ([SS89]) or in other terms, the corresponding DL axiom-
atization resulted into an undecidable language. First families of expressive
DLs as precisely ALCQI and ALCQIO allowing for general concept inclusion
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(GCI) TBoxes, ABoxes, etc., are hence allowing for complex constructs only in
concept definition axioms, but, nowadays, some promising attempts to safely ex-
tend these languages in terms of role constructs has been made achieving a new
family of expressive DLs including languages as SHOIN (D) and SROIQ(D)
([HPS03], [HKS06]).

In particular, we are interested to exploit the working logic C2 capability to
deal with some, despite not any possible, role-related terms, given its symmetry
w.r.t. unary and binary predicates, generally missed by most of DLs. The
resulting language is an extension of ALCQIO that enriches the role expression
language as follows:

R,R′ −→ P |R− | ¬R |R uR′ |R � C

Using these primitive constructs is also possible to define other operators on roles
as: t, �, ×, O, and4. The constraint language has been extended consequently:
the TBox T allows also for general role inclusion (GRI) axioms in the form
R v S, where R and S are role expressions. In the spirit of [HSG04], we denote
such language as ALCQIO(¬,u, �), listing the new primitive role operators.

Remark 46. We point out that this language, since it allows also for nominals,
is a proper extension of ALB (see [HS98]), that essentially enriches ALC with
top role, role complement, role inverse, role intersection, and domain/range role
restrictions.

An interpretation I satisfies, or is a model of, the knowledge base iff, for
each R v S ∈ T , RI ⊆ SI . The semantics of this language can be expressed in
terms of first-order logic fragment C2 refining the definition provided in Section
3.2.2.

πx(A) , A(x)

πx(¬C) , ¬πx(C)

πx(C u C ′) , πx(C) ∧ πx(C ′)

πx(./ n R C) , ∃./ny.πxy(R) ∧ πy(C))

πy(C) , πx(C)[x/y, y/x]

πxy(P ) , P (x, y)

πxy(R−) , πyx(R)

πxy(¬R) , ¬πxy(R)

πxy(R uR′) , πxy(R) ∧ πxy(R′)

πxy(R � C) , πxy(R) ∧ πx(C)

πyx(R) , πxy(R)[x/y, y/x]

π(](C) ./ n) , ∃./nx.πx(C)

π(C v D) , ∀x.πx(C)→ πx(D)

π(R v S) , ∀x, y.πxy(R)→ πxy(S)

As in the previous case, nominals has been replaced using singleton concepts.
Also the identity relation id can be expressed introducing a role name id and
adequate constraints (∀x.id(x, x) and ∀x.∃=1y.id(x, y)).
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Example 18. Using these new kind of languages, we can easily model some
more complex constraints.

Considering the simple domain introduced in the Example 2, we need, now,
also to express the following requirements: a citizen can be authorized only for
activities held by itself. As shown in the Example 15, we can model such a
restrictions using service preconditions, but what about the possibility to specify
it as world constraint, that must be always enforced no matter how services are
defined?

Clearly, introducing role inclusion axioms, a simple role assertion as the
following is able to capture such application requirement:

authorizedFor v owner � Shop

Remark 47. Interestingly, the devised repair strategy can easily infer the repair
+owner(x1, x2) for the citizen x1 and the shop x2, in the case the constraint
should be violated by a service enactment. Despite this inference is technically
correct it seems “semantically” puzzling, since the service make the requesting
citizen also the owner of the shop. In other words, the repair algorithm need to
be tuned in different situations, accordingly shaping the search solution space,
allowing or denying the possibility to repair a given group of predicates.

This aspect is addressed in [BLM+05b] by means of the occlusion restric-
tions: a similar approach can easily be adapted to the present framework.

Example 19. We extend the specification presented in previous examples, in-
troducing the new concept of District and the new properties partOf, headTown,
to denote, resp., administrative district and the part-of relation and the head
town of a district. We can add various additional axioms as, in example:

District uA v ⊥

for every A ∈ A \ {District}, in order to assert that this concept extension
is disjoint from other ones1. W.l.o.g., we can also assume that a district is
composed by towns and that an empty district cannot be defined, as well as a
town can be assigned only to a district:

District v ∃partOf−.Town

District v ∀partOf−.Town

Town v (= 1 partOf District)

Similar axioms also are introduced for the property headTown:

∃headTown−.> v District

∃headTown.> v Town

District v (= 1 headTown>)

We need, also, to implement the requirement that restrict the head-town of a
district to be a town assigned to district itself. This kind of constraint requires
the ability to express role-based axioms as:

homeTown v partOf− � Town � District

1Whether there exist some sub-concepts of District, this kind of meta-axiom must be ac-
cordingly adjusted.
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In order to extend to this new language the results presented so far, we need
essentially to adequately adjust the notion of embedding relation and related
concepts that allows to translate the axioms provided in the problem specifica-
tion. We observe that definition of embedding relation can be left untouched,
while the translation function τ (and its generalizations) needs introduced at
page 33, to be extended to deal with new role operators too. The extended
translation function τ∗ rewrites any arbitrary concept or role expression in
ALCQIO(¬,u, �) over the alphabet 〈A,P,O〉 to a new concept or role expres-
sion in ALCQIO(¬,u, �) over the alphabet 〈A ∪ {Top} ,P,O〉, and it defined
as follows:

τ∗(A) , A

τ∗(C u C ′) , τ(C) u τ∗(C ′)

τ∗((./ n R C)) , (./ n τ∗(R) τ∗(C))

τ∗({o}) , {o}
τ∗(¬C) , Top u ¬τ∗(C)

τ∗(P ) , P

τ∗(R−) , τ∗(R)−

τ∗(R uR′) , τ∗(R) u τ∗(R′)
τ∗(¬R) , (Top× Top) u ¬τ∗(R)

τ∗(R � C) , τ∗(R) � τ∗(C)

The foundational property of this function is that it preserves the interpretation
of arbitrary expressions through the embedding relation among the structures.
In Theorems 1 and 2, we have shown has this property holds for the basic
ALCQIO role and concept expression languages, now we need to extend such
result to a more general case.

Theorem 92. Let be ω and ω̂ be respectively a world state and an arbitrary
interpretation s.t. the world state is embedded into the interpretation (ω  ω̂),
then:

Cω = [τ∗(C)]ω̂

for any ALCQIO(¬,u, �) concept expression C built over the domain specifica-
tion alphabet 〈A,P,O〉 and:

Rω = [τ∗(R)]ω̂

for any ALCQIO(¬,u, �) role expression R built over the domain specification
alphabet 〈A,P,O〉.

Proof. We prove the theorem by mutual induction over the concept and role
expression languages.

1. Nω = [τ∗(N)]ω̂ where N ∈ A∪P. By the definition of translation function
τ∗:

[τ∗(N)]ω̂ = N ω̂

By the definition of the embedding relation between the structures:

N ω̂ = Nω
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2. [{o1, . . . , on}]ω = [τ∗({o1, . . . , on})]ω̂ where {o1, . . . , on} ⊆ O. By the
definition of translation function τ∗:

[τ∗({o1, . . . , on})]ω̂ = [{o1, . . . , on}]ω̂

According to the standard semantics:

[{o1, . . . , on}]ω̂ =
n⋃

i=1

oω̂
i

By the definition of the embedding relation between the structures:

n⋃
i=1

oω̂
i =

n⋃
i=1

oω
i

According to the standard semantics:

n⋃
i=1

oω
i = [{o1, . . . , on}]ω

3. [C u C ′]ω = [τ∗(C u C ′)]ω̂. By the definition of translation function τ∗:

[τ(C u C ′)]ω̂ = [τ(C) u τ(C ′)]ω̂

According to the standard semantics:

[τ∗(C) u τ∗(C ′)]ω̂ = τ∗(C)ω̂ ∩ τ∗(C ′)ω̂

By the inductive hypothesis:

τ∗(C)ω̂ ∩ τ∗(C ′)ω̂ = Cω ∩ C ′ω

According to the standard semantics:

Cω ∩ C ′ω = [C u C ′]ω

4. [R uR′]ω = [τ∗(R uR′)]ω̂. This case can be proved using the same argu-
mentation of the previous one since the symmetry.

5. [R−]ω = [τ∗(R−)]ω̂. By the definition of translation function τ∗:

[τ∗(R−)]ω̂ = [τ∗(R)−]ω̂

According to standard semantics:

[τ∗(R)−]ω̂ =
{
〈β, α〉|〈α, β〉 ∈ τ∗(R)ω̂

}
By the inductive hypothesis:{

〈β, α〉|〈α, β〉 ∈ τ∗(R)ω̂
}

= {〈β, α〉|〈α, β〉 ∈ Rω}

Applying too the standard semantics, we can conclude that:

{〈β, α〉|〈α, β〉 ∈ Rω} = [R−]ω
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6. [¬C]ω = [τ∗(¬C)]ω̂. By the definition of translation function τ∗:

[τ∗(¬C)]ω̂ = [Top u ¬τ∗(C)]ω̂

According to the standard semantics:

[Top u ¬τ∗(C)]ω̂ = Topω̂ ∩ [¬τ∗(C)]ω̂

Topω̂ ∩ [¬τ∗(C)]ω̂ = Topω̂ ∩ (U \ [τ∗(C)]ω̂)

By the inductive hypothesis:

Topω̂ ∩ (U \ [τ∗(C)]ω̂) = Topω̂ ∩ (U \ Cω)

By the definition of the embedding relation between the structures:

Topω̂ ∩ (U \ Cω) = ∆ω ∩ (U \ Cω)

Since ∆ω ⊆ U and Cω ⊆ U:

∆ω ∩ (U \ Cω) = ∆ω \ Cω

According to the standard semantics:

∆ω \ Cω = [¬C]ω

7. [¬R]ω = [τ∗(¬R)]ω̂. By the definition of translation function τ∗:

[τ∗(¬R)]ω̂ = [(Top× Top) u ¬τ∗(R)]ω̂

According to the standard semantics:

[(Top× Top) u ¬τ∗(R)]ω̂ = (Topω̂ × Topω̂) ∩ [¬τ∗(R)]ω̂

(Topω̂ × Topω̂) ∩ [¬τ∗(R)]ω̂ = (Topω̂ × Topω̂) ∩ ((U× U) \ [τ∗(R)]ω̂)

By the inductive hypothesis:

(Topω̂ × Topω̂) ∩ ((U× U) \ [τ∗(R)]ω̂) = (Topω̂ × Topω̂) ∩ ((U× U) \Rω)

By the definition of the embedding relation between the structures:

(Topω̂ × Topω̂) ∩ ((U× U) \Rω) = (∆ω ×∆ω) ∩ ((U× U) \Rω)

Since ∆ω ⊆ U and Rω ⊆ U× U:

(∆ω ×∆ω) ∩ ((U× U) \Rω) = (∆ω ×∆ω) \Rω

According to the standard semantics:

(∆ω ×∆ω) \Rω = [¬R]ω
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8. [(≥ nRC)]ω = [τ∗((≥ nRC))]ω̂, where R is an arbitrary role expression.
By the definition of translation function τ∗:

[τ∗((≥ n R C))]ω̂ = [(≥ n τ∗(R) τ(C))]ω̂

According to the standard semantics:

[(≥ n τ∗(R) τ∗(C))]ω̂ =
{
α|
∥∥∥Sω̂

τ∗(C),τ∗(R)(α)
∥∥∥ ≥ n} (7.1)

where Sω̂
τ∗(C),τ∗(R)(α) is the set of τ∗(R)-successors of element α belonging

to τ∗(C) defined as:

Sω̂
τ∗(C),τ∗(R)(α) =

{
β|β ∈ τ(C)ω̂, 〈α, β〉 ∈ τ∗(R)ω̂

}
But, since the inductive hypothesis, we have that:

Sω̂
τ∗(C),τ∗(R)(α) = {β|β ∈ Cω, 〈α, β〉 ∈ Rω}

In other words, we can conclude that:

Sω̂
τ∗(C),τ∗(R)(α) = Sω

C,R(α)

Applying such result back to Equation 7.1, we have that:

[(≥ n τ∗(R) τ∗(C))]ω̂ =
{
α|
∥∥Sω

C,R(α)
∥∥ ≥ n}

Observing, according to standard semantics, that:

[(≥ n R C)]ω =
{
α|
∥∥Sω

C,R(α)
∥∥ ≥ n}

we have proved the claim.

9. [R � C]ω = [τ∗(R � C)]ω̂. By the definition of translation function τ∗:

[τ∗(R � C)]ω̂ = [τ∗(R) � τ∗(C)]ω̂

According to standard semantics:

[τ∗(R) � τ∗(C)]ω̂ =
{
〈α, β〉|〈α, β〉 ∈ τ∗(R)ω̂, α ∈ τ∗(C)ω̂

}
By the inductive hypothesis:{
〈α, β〉|〈α, β〉 ∈ τ∗(R)ω̂, α ∈ τ∗(C)ω̂

}
= {〈α, β〉|〈α, β〉 ∈ Rω, α ∈ Cω}

Applying too the standard semantics we can conclude that:

{〈α, β〉|〈α, β〉 ∈ Rω, α ∈ Cω} = [R � C]ω

We extend also the definition of translation function to knowledge base hav-
ing role inclusion assertion, as the following. Let KB = 〈T ,A〉 be an arbitrary
ALCQIO(¬,u, �) knowledge base built over the domain specification (i.e., a
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world specification W), we define a new knowledge base τ∗(KB) over the ex-
tended alphabet s.t. for each general inclusion assertion C v D in the TBox T
it includes a new axiom of the form:

τ∗(C) v τ∗(D)

for each role inclusion assertion R v S in the TBox T it includes a new axiom
of the form:

τ∗(R) v τ∗(S)

for each ABox assertion o : C in A it includes a new axiom of the form:

o : τ∗(C)

and, for each ABox assertion (o, o′) : R in A it includes a new axiom of the
form:

(o, o′) : τ∗(R)

Given this definition and applying Theorem 92, we can also extends Theo-
rems 3 and 4 to this case, obtaining the following claims:

Theorem 93. If a world state ω is a model of the ALCQIO(¬,u, �) knowledge
base KB, then the structure ω̂ = µ(ω) is a model of the knowledge base K̃B ∧
τ∗(KB).

Theorem 94. If ω̂ is a model of the knowledge base K̃B ∧ τ∗(KB), then the
interpretation ω = π(ω̂) is a world state that satisfies the ALCQIO(¬,u, �)
knowledge base KB.

Corollary 22. The ALCQIO(¬,u, �) knowledge base KB is satisfiable on an
arbitrary interpretation domain ∆ ⊆ U iff the knowledge base K̃B ∧ τ∗(KB) is
satisfiable on U.

According to [LS01], the reasoning in ALB is NEXP-complete, hence, given
the reduction to reasoning in C2 we can also state the following results:

Theorem 95. Given an ALCQIO(¬,u, �) world specification W, the problem
of checking if it is consistent is NEXP-complete.

Moreover, as discussed in Chapter 3, we have pointed out that not for any
world specification language the original knowledge base KB that is satisfiable
on a restricted active domain ∆ω ( U is also satisfiable on the whole interpreta-
tion universe U. In the case of ALCQIO we have proved that since cardinality
restrictions it is possible, for example, to force the knowledge to be satisfiable
only on finite models. This is essentially due to the lack of the disjoint union
model property for nominal-enriched languages. What is the situation in the
case of arbitrary boolean role constructs? Is it sufficient to renounce to nominals
to achieve such a property? The answer is in general negative as the following
example shows.

Example 20. Given a simple knowledge KB base having the following axiom
in the TBox:

¬R v S
where R and S are two role names, we consider two disjoint models ω and ω′.
Let x and x′ be, resp., an element of ω and an element of ω′, the resulting
disjoint union ω∪ω′ is not a model of KB since the pair 〈x, x′〉 does not belong
to Rω∪ω′ , but it neither belongs to Sω∪ω′ , violating the axiom.
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We now consider a new language that removes nominal and role negation, but
maintains other main role operators. This language is denoted asALCQI(t,u, �
, �,4) and is defined from ALCQI introducing the following production rule for
role expressions:

R,R′ −→ P |R− |R tR′ |R uR′ |R � C |R � C | 4

It is clearly a sub-language of ALCQIO(¬,u, �), since additional constructs
can be obtained combining primitive ones. For this language, we can state the
following property:

Lemma 52. Given an arbitrary ALCQI(t,u, �, �,4) role or concept expression
E and two interpretation structures ω′ = 〈∆ω′ , ·ω′〉 and ω′′ = 〈∆ω′′ , ·ω′′〉, s.t.
the interpretation domains are disjoint (∆ω′ ∩∆ω′′ = ∅), then, let ω = 〈∆ω′ ∪
∆ω′′ , ·ω′∪ω′′〉 be the interpretation structure obtained by the union of ω′ and ω′′,
Eω = Eω′ ∪ Eω′′ .

Proof. We prove the claim by induction on the expression language.

1. Nω = Nω′ ∪Nω′′ where N ∈ A∪P. This case follows from the definition
of disjoint union structure ω, since Aω = Aω′ ∪ Aω′′ for any A ∈ A and
Pω = Pω′ ∪ Pω′′ for any P ∈ P

2. [C u C ′]ω = [C u C ′]ω
′ ∪ [C u C ′]ω

′′
. According to standard semantics:

[C u C ′]ω = Cω ∩ C ′ω

By inductive hypothesis:

Cω ∩ C ′ω = (Cω′ ∪ Cω′′) ∩ (C ′ω′ ∪ C ′ω′′)

Given properties of set operators, we can rearrange the expression as fol-
lowing:

(Cω′∪Cω′′)∩(C ′ω′∪C ′ω′′) = (Cω′∩C ′ω′)∪(Cω′′∩C ′ω′)∪(Cω′∩C ′ω′′)∪(Cω′′∩C ′ω′′)

But since Cω′ ⊆ ∆ω′ , C ′ω′ ⊆ ∆ω′ , Cω′′ ⊆ ∆ω′ , C ′ω′′ ⊆ ∆ω′ , and given
the disjointness hypothesis we have that:

(Cω′∩C ′ω′)∪(Cω′′∩C ′ω′)∪(Cω′∩C ′ω′′)∪(Cω′′∩C ′ω′′) = (Cω′∩C ′ω′)∪(Cω′′∩C ′ω′′)

Applying the standard semantics, we finally obtain that:

(Cω′ ∩ C ′ω′) ∪ (Cω′′ ∩ C ′ω′′) = [C u C ′]ω
′
∪ [C u C ′]ω

′′

3. [R u R′]ω = [R u R′]ω′ ∪ [R u R′]ω′′ . This case can be proved using the
same argumentation of the previous one, observing that Rω′ ⊆ ∆ω′×∆ω′ ,
R′ω

′ ⊆ ∆ω′ ×∆ω′ , Rω′′ ⊆ ∆ω′ ×∆ω′ , R′ω
′′ ⊆ ∆ω′ ×∆ω′ .

4. [R tR′]ω = [R tR′]ω′ ∪ [R tR′]ω′′ . According to standard semantics:

[R tR′]ω = Rω ∪R′ω

By inductive hypothesis:

Rω ∪R′ω = (Rω′ ∪Rω′′) ∪ (R′ω
′
∪R′ω

′′
)
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We can simply rearrange the expression as following:

(Rω′ ∪Rω′′) ∪ (R′ω
′
∪R′ω

′′
) = (Rω′ ∪R′ω

′
) ∪ (Rω′′ ∪R′ω

′′
)

Applying the standard semantics, it follows that:

(Rω′ ∪R′ω
′
) ∪ (Rω′′ ∪R′ω

′′
) = [R tR′]ω

′
∪ [R tR′]ω

′′

5. [¬C]ω = [¬C]ω
′ ∪ [¬C]ω

′′
. According to the standard semantics of nega-

tion, we obtain that:
[¬C]ω = ∆ω \ Cω

Moreover, by the inductive hypothesis and the definition of model union:

∆ω \ Cω = (∆ω′ ∪∆ω′) \ (Cω′ ∪ Cω′′)

We can rearrange the expression as the following:

(∆ω′ ∪∆ω′) \ (Cω′ ∪ Cω′′) = (∆ω′ \ (Cω′ ∪ Cω′′)) ∪ (∆ω′′ \ (Cω′ ∪ Cω′′))

But, since ∆ω′′ ∩ Cω′ = ∅ and ∆ω′ ∩ Cω′′ = ∅, we can conclude that:

(∆ω′ ∪∆ω′) \ (Cω′ ∪ Cω′′) = (∆ω′ \ (Cω′) ∪ (∆ω′) \ Cω′′)

According to semantics, we obtain that:

(∆ω′ \ Cω′) ∪ (∆ω′ \ Cω′′) = [¬C]ω
′
∪ [¬C]ω

′′

6. [R−]ω = [R−]ω
′ ∪ [R−]ω

′′
. According to the definition of inverse role

operator, it follows that:

[R−]ω = {〈β, α〉|〈α, β〉 ∈ Rω}

By induction, we have that:

{〈β, α〉|〈α, β〉 ∈ Rω} =
{
〈β, α〉|〈α, β〉 ∈ Rω′ ∪Rω′′

}
Since Rω′ ∩Rω′′ = ∅, we can rewrite the previous expression as:{
〈β, α〉|〈α, β〉 ∈ Rω′ ∪Rω′′

}
=
{
〈β, α〉|〈α, β〉 ∈ Rω′

}
∪
{
〈β, α〉|〈α, β〉 ∈ Rω′′

}
According to operator semantics, we can finally conclude that:{

〈β, α〉|〈α, β〉 ∈ Rω′
}
∪
{
〈β, α〉|〈α, β〉 ∈ Rω′′

}
= [R−]ω

′
∪ [R−]ω

′′

7. [(≥ n R C)]ω = [(≥ n R C)]ω
′ ∪ [(≥ n R C)]ω

′′
. We start applying the

definition of the operator semantics:

[(≥ n R C)]ω = {α|α ∈ δω, ‖{β|β ∈ Cω, 〈α, β〉 ∈ Rω}‖ ≥ n}

We split this set into two components defined as:

[(≥ n R C)]ω ∩∆ω′ =
{
α|α ∈ ∆ω′ , ‖{β|β ∈ Cω, 〈α, β〉 ∈ Rω}‖ ≥ n

}
[(≥ n R C)]ω ∩∆ω′′ =

{
α|α ∈ ∆ω′′ , ‖{β|β ∈ Cω, 〈α, β〉 ∈ Rω}‖ ≥ n

}
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Since interpretation domains are disjoint, this is a partitioning of the orig-
inal set. Since the symmetry, we consider only the first partition. By
induction, it follows that:

[(≥ n R C)]ω ∩∆ω′ =
{
α|α ∈ ∆ω′ ,

∥∥∥Sω′∪ω′′

C,R (α)
∥∥∥ ≥ n}

=
{
α|α ∈ ∆ω′ ,

∥∥∥Sω′/ω′′

C,R (α) ∪ Sω′′/ω′′

C,R (α)
∥∥∥ ≥ n}

where Sω′∪ω′′

C,R (α), Sω′/ω′′

C,R (α), and Sω′′/ω′′

C,R (α) are defined as follows:

Sω′∪ω′′

C,R (α) ,
{
β|β ∈ Cω′ ∪ Cω′′ , 〈α, β〉 ∈ Rω′ ∪Rω′′

}
S

ω′/ω′′

C,R (α) ,
{
β|β ∈ Cω′ , 〈α, β〉 ∈ Rω′ ∪Rω′′

}
S

ω′′/ω′′

C,R (α) ,
{
β|β ∈ Cω′′ , 〈α, β〉 ∈ Rω′ ∪Rω′′

}
We now consider the set defined as

{
β|β ∈ Cω′ , 〈α, β〉 ∈ Rω′ ∪Rω′′

}
, since

Rω′′ ∪∆ω′ ×∆ω′ = ∅ and α ∈ ∆ω′ , we can conclude that:{
β|β ∈ Cω′ , 〈α, β〉 ∈ Rω′ ∪Rω′′

}
=
{
β|β ∈ Cω′ , 〈α, β〉 ∈ Rω′

}
While, regarding the other set, since we are assuming that α ∈ ∆ω′ and
β ∈ Cω′′ ⊆ ∆ω′′ and that ∆ω′ ∩ ∆ω′′ = ∅, we can conclude that it is
empty. Hence, we have that:

[(≥ n R C)]ω ∩∆ω′ =
{
α|α ∈ ∆ω′ ,

∥∥∥{β|β ∈ Cω′ , 〈α, β〉 ∈ Rω′
}∥∥∥ ≥ n}

In other words, it follows that:

[(≥ n R C)]ω ∩∆ω′ = [(≥ n R C)]ω
′

By the symmetry, a similar result also holds for the other set. Combining
them we finally prove the claim.

8. [R � C]ω = [R � C]ω
′ ∪ [R � C]ω

′′
. According to definition of domain

restriction operator in the standard semantics, we have that:

[R � C]ω = {〈α, β〉|〈α, β〉 ∈ Rω, α ∈ Cω}

By the inductive hypothesis, we can state also that:

{〈α, β〉|〈α, β〉 ∈ Rω, α ∈ Cω} =
{
〈α, β〉|〈α, β〉 ∈ Rω′ ∪Rω′′ , α ∈ Cω′ ∪ Cω′′

}
We, now, split this set into two parts as:

T ′ =
{
〈α, β〉|〈α, β〉 ∈ Rω′ , α ∈ Cω′ ∪ Cω′′

}
T ′′ =

{
〈α, β〉|〈α, β〉 ∈ Rω′′ , α ∈ Cω′ ∪ Cω′′

}
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Given the set T ′ we can observe that, since Rω ⊆ ∆ω′×∆ω′ , ∆ω′ ∩∆ω′′ =
∅, and Cω′′ ⊆ ∆ω′′ , we can conclude that α ∈ Cω′ . In other words, we
have that:

T ′ =
{
〈α, β〉|〈α, β〉 ∈ Rω′ , α ∈ Cω′

}
But, according to standard semantics we have that:

T ′ = [R � C]ω
′

By the symmetry among ω′ and ω′′, a specular result also holds for T ′′,
hence the hypothesis.{
〈α, β〉|〈α, β〉 ∈ Rω′ ∪Rω′′ , α ∈ Cω′ ∪ Cω′′

}
= [R � C]ω

′
∪ [R � C]ω

′′

9. [R � C]ω = [R � C]ω
′ ∪ [R � C]ω

′′
. This case can be proved using an

argumentation similar to the previous one.

10. 4ω = 4ω′ ∪4ω′′ . Trivial.

Theorem 96. The disjoint union model property holds for the ALCQI(t,u, �
, �,4) concept and role inclusion axiom language.

Proof. In order to prove the claim we need to show that given any arbitrary
pair of models ω′ and ω′′ of given ALCQI(t,u, �, �,4)-TBox T , the structure
ω obtained by the union of the provided ones is also a model of T . By contra-
diction, we assume that there exists at least an axiom, e.g., R v S, where R
and S are ALCQI(t,u, �, �,4)-role expression, s.t., despite it holds in ω′ and
ω′′, it is violated in ω. It means that there exists at least a pair of elements
〈x, y〉 s.t.:

〈x, y〉 ∈ Rω \ Sω

According to Lemma 52, we have that Rω = Rω′ ∪ Rω′′ and Sω = Sω′ ∪ Sω′′ .
In other terms:

〈x, y〉 ∈ (Rω′ ∪Rω′′) \ (Sω′ ∪ Sω′′) = Rω′ \ (Sω′ ∪ Sω′′) ∪Rω′′ \ (Sω′ ∪ Sω′′)

Since the interpretation domains of ω′ and ω′′ are disjoint, also the interpretation
of expressions are. So we have that:

〈x, y〉 ∈ Rω′ \ Sω′ ∪Rω′′ \ Sω′′

In other words, we must conclude that 〈x, y〉 ∈ Rω′ \ Sω′ or that 〈x, y〉 ∈
∪Rω′′ \Sω′′ , which means that the axiom is violated in ω′ or in ω′′ contradicting
the hypothesis. Using a quite similar argumentation, we can prove the claim
also for ALCQI(t,u, �, �,4)-concept expressions.

Given the previous results, we can easily extends Lemmas 6 and 7 to this
case, obtaining the following claim as a generalization of Theorem 6.

Theorem 97. Given an ALCQI(t,u, �, �,4)-knowledge base, if it admits a
model over an arbitrary subset ∆ω of the interpretation universe U , then it
admits also a model on the whole universe.
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Remark 48. Please notice that the extensional specification does not play any
role in such a context, since given the disjointness condition on interpretation
domains and the standard name assumption, we can not provide any suitable
interpretation function for object names (i.e., an object name o ∈ O is inter-
preted as oω′ 6= oω′′ , so it can not have an unambiguous interpretation in ω).
Moreover given the usage of the disjoint union model property in the mentioned
proof, this limitation is not pertinent.

We point out that all results state so far for ALCQI world specification and
ALCQIO queries are preserved usingALCQI(t,u, �, �,4) andALCQIO(¬,u, �
) resp. as constraint and query languages since, generally speaking:

• the properties of embedding relation are substantially unmodified;

• the “working” language C2 expressive power is enough to deal with new
constructs, generally Description Logics with boolean enhanced role prim-
itives are strictly contained into such FOL fragment, but also additional
equipment required to axiomatize update properties can successfully rep-
resented using the devised encoding;

• the encoding is still linear in the size of the input, hence the reductions
employed to state complexity results are preserved in this scenario.

For the sake of brevity we omit the proofs of these claims, but we observe that
they can be easily obtained replacing the references to results devised in Chapter
3 (in particular, Theorems 1 and 2) with the corresponding ones provided in
this section.

In the expanded framework we can so employ the following definitions:

Definition 129 (World specification). A world specification W is a knowledge
base 〈TW ,AW〉 expressed on the alphabet 〈A,P,O〉 using the expressive descrip-
tion logic with role axioms ALCQI(t,u, �, �,4).

Definition 130 (Parameterized (concept) query). Given a domain specifica-
tion and a finite set of variable names V, distinct from domain alphabets, a
parameterized (concept) query Q(V) is an arbitrary ALCQIO(¬,u, �)-concept
expression built on the alphabet 〈A ∪V,P,O〉.

Definition 131 (Parameterized (concept) query template). Given a domain
specification, a set of template parameter names Z, and a finite set of variable
names V, distinct from domain alphabets, a parameterized (concept) query tem-
plate QZ(V) is an arbitrary ALCQIO(¬,u, �)-concept expression built on the
alphabet 〈A ∪V,P,O ∪ Z〉.

We can also allows to role expression queries defined as:

Definition 132 (Parameterized role query). Given a domain specification and
a finite set of variable names V, distinct from domain alphabets, a parameterized
role query Q(V) is an arbitrary ALCQIO(¬,u, �)-role expression built on the
alphabet 〈A ∪V,P,O〉.

Definition 133 (Parameterized role query template). Given a domain spec-
ification, a set of template parameter names Z, and a finite set of variable
names V, distinct from domain alphabets, a parameterized role query template
QZ(V) is an arbitrary ALCQIO(¬,u, �)-role expression built on the alphabet
〈A ∪V,P,O ∪ Z〉.
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The properties of concept expression queries can be easily generalized to this
case. Generally, we can employ such kind of queries as condition expression in
the specification of the services. As definition of precondition we can now, e.g.,
assume the following:

Definition 134 (Extended atomic precondition term). Let XS be the input
variable names of a service S defined in the domain 〈A,P,O〉. An atomic
precondition, which is suitable for such a service, is a pair 〈s,Q(X)〉 where:

• s ∈ {+,−} is the sign of the precondition (positive or negative);

• Q(X) is a parameterized concept or role query over the domain specifica-
tion in the variables X ⊆ XS.

Definition 135 (Extended atomic condition term). Let XS be the input variable
names of a service S defined in the domain 〈A,P,O〉. An atomic condition
term, that is suitable for such a service, is a pair 〈s,Q(X)〉 where:

• s ∈ {+,−} is the sign of the precondition (positive or negative);

• Q(X) is a parameterized concept or role query over the domain specifica-
tion in the variables X ⊆ XS.

The semantics of these constructs is left untouched. Give these constructs
we can also extend also the definition of role update primitives adding the
followings:

Definition 136 (Positive role effect argument). Let XS be the input variable
names of a service S defined in the domain 〈A,P,O〉, and let YS be the corre-
sponding output variable names. A positive role effect argument is any element
Y ∈ YS or any parameterized role query Q(X) over the domain specification in
the variables X ⊆ XS.

Definition 137 (Negative role effect argument). Let XS be the input variable
names of a service S defined in the domain 〈A,P,O〉. A negative role effect
argument is any parameterized role query Q(X) over the domain specification
in the variables X ⊆ XS.

Definition 138 (Extended atomic role effect). Let XS be the input variable
names of a service S defined in the domain 〈A,P,O〉, and let YS be the corre-
sponding output variable names. An extended atomic role effect, that is suitable
for such a service, is a triple 〈s, P, q〉 where:

• s ∈ {+,−} is the sign of the effect (insert or delete);

• P ∈ P is the target role name;

• q is the arguments of the update (positive or negative) according to the
sign of the effect.

Definition 139 (Role insert set). Let E be a simple service effect specification,
P ∈ P a concept name, ω a world state, σX an input variable assignment
consistently defined w.r.t. ω. The link insert set for the role P is defined as:

P+(ω, σX) =

 ⋃
〈+,P,Q(X),Q′(X)〉∈E

Qω(σX)×Q′ω(σX) ∪
⋃

〈+,P,Q′′(X)〉∈E

Q′′ω(σX)

\Pω
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Definition 140 (Role delete set). Let E be a simple service effect specifica-
tion, P ∈ P a role name, ω a world state, σX an input variable assignment
consistently defined w.r.t. ω, the link delete set for the role P is defined as:

P−(ω, σX) =

 ⋃
〈−,P,Q(X),Q′(X)〉∈E

Qω(σX)×Q′ω(σX) ∪
⋃

〈−,P,Q′′(X)〉∈E

Q′′ω(σX)

∩Pω

The corresponding adjustment of related axiom schemas is straightforward.

7.2 State Transition Constraints

So far the proposed framework is able to deal with static constraints or, in other
words, with constraints that can be evaluated/enforced on a given world state
ω. In fact, in the Chapter 3 we have provided a definition of legal world state
(i.e., a world state satisfying the constraint set) and we have devised on this
foundation the notion of legal service too (see page 83): generally speaking,
any transition from a legal state to another legal one is allowed once a suitable
service is provided.

In this section, we are interested in the analysis the possibility to express and
enforce also constraints related to the transition relation, filtering out some par-
ticular behaviors as not allowed. Such a kind of constraints can be employed in
different system modeling language, e.g., in the UML class modeling ([OMG07])
it is possible to labeling a class association-end (essentially a role in DL accord-
ing to [CCDL02] and [SB05]) as frozen or add-only denoting the fact that the
extensional level of such role is immutable or that new pair can be added but not
removed2. In a similar way, in a RDBMS, it is possible acting on user privilege
definitions to prevent from removing or updating a record in a table or enforcing
more complex dynamic constraints using triggers3. Moreover, a typical field of
application of temporal logics is the verification of dynamic properties of au-
tomata or, in other words, if the update state sequence is always consistent with
a given set of constraints. Different applications of Model Checking techniques
to e-services (see 2.2.4, 2.2.7, 2.2.8, and 2.2.11) are actually facing with this kind
of issues in terms of the temporal integrity of the system: from their perspective
we are addressing the consistency analysis of atomic steps.

As first step we need to extend the definition of world specification in order
to allow the ability of express such a kind of constraints.

Definition 141 (Concept dynamic axiom). Given a concept expression lan-
guage L and a suitable alphabet (i.e., 〈A,P,O〉), a concept dynamic axiom is a
pair 〈s, C〉 s.t.:

• s ∈ {=,+,−} is the sign of the axiom;

• C is an L-concept expression over the alphabet.
2In the UML meta-model, this feature is denoted as changeability property of association

link.
3For a survey on this aspect of data modeling see [Tha00]. Generally this topic is addressed

also in temporal databases [DD02] and it is a typical application of temporal logics using model
checking techniques ([CS01]).
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Definition 142 (Role dynamic axiom). Given a role expression language L and
a suitable alphabet, a role dynamic axiom is a pair 〈s,R〉 s.t.:

• s ∈ {=,+,−} is the sign of the axiom;

• R is an L-role expression over the alphabet.

Roughly speaking, “positive” dynamic axioms denote set of elements (or set
of element pairs) denoted by the means of an expression s.t. their extensions
must not decrease during the system evolution, the “negative” ones these s.t.
their extensions must not increase, while others sets that have to be immutable.

For the sake of brevity we can also express such axioms as Cs or Rs.

Definition 143 (Dynamic axiom box (DBox)). Given a language L allowing
for role and concept expressions and an alphabet 〈A,P,O〉, a dynamic axiom
box is a finite set of concept or role dynamic axioms expressed in L over the
provided alphabet.

While the definition of consistency of a “traditional” KB is given w.r.t.
a single interpretation structure, in the case of state transition constraint we
need to keep into account at least two structures, assuming that there exists
an arbitrary kind of update operator that evolve the system from a state to
the other one. W.l.o.g. we are facing the problem adopting the unique name
assumption, which means that the interpretation of object names is always
immutable.

Definition 144 (DBox model). Given a pair of interpretations ω and ω′, rang-
ing over two domains ∆ω and ∆ω′ defined in the same universe U, and a DBox
D, we say that the transition ω → ω′ is a model of the DBox (ω → ω′ |= D) if
for each dynamic axiom 〈s,E〉 ∈ D we have that:

• Eω ⊆ Eω′ if s = +;

• Eω ⊇ Eω′ if s = −;

• Eω = Eω′ otherwise.

Proposition 5. The idempotent transition ω → ω is always a model for any
given DBox D.

Proof. Trivial.

Definition 145 (Allowed transition set). Given a DBox D, the allowed transi-
tion set TD contains any transition ω → ω′ s.t. ω → ω′ |= D.

This definition simply extends the concept of consistency for TBox/ABox,
but as we are not interested in empty models, we are also interested in dynamic
specifications that don’t completely freeze the system state.

Definition 146 (Consistent DBox). A DBox D is non-immutable if there exists
at least a transition ω → ω′, s.t. ω 6= ω′, that is a model of it.

This definition can also extended keeping into account also the remaining
knowledge base KB = 〈T ,A〉:
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Definition 147 (KB-consistent DBox). Given a consistent knowledge base
KB = 〈T ,A〉, a DBox D is consistent w.r.t. it if there exists at least a transition
ω → ω′, s.t. ω 6= ω′, ω |= KB, ω′ |= KB, that is a model of it.

Remark 49. Assuming a general DL axiomatization of the UML language in
the spite of [CCDL02] and [SB05], we can easily verify that using this kind
of axioms we can model dynamic restrictions implied by UML changeability
property on association links, e.g., a positive role DBox axiom is a generalization
of the add-only flag.

Example 21. Given the Example 19, we consider the following additional con-
straint: the composition of an administrative district cannot be altered (at least
from the application perspective), as the assigned head town.

This kind of dynamic constraint, essentially specifying frozen properties, can
be obtained adding the following dynamic axioms to the DBox component:

〈=, headTown〉
〈=, partOf � Town � District〉

Remark 50. While the first constraint can be also simulated simply removing
headTown from the set of predicate that can be updated or repaired, the second
one, since is based on actual instances (generally the predicate partOf can be
modified without restrictions) requires a more sophisticated approach.

Example 22. We assume that the representation has been extended to capture
also the history of the system. In other words, that some additional predicates
have been introduced to keep track of previous assignment of some logged prop-
erties.

Given the domain analyzed in previous examples, we introduce the additional
property pastResidence to store in which towns the citizen previously lived. Gen-
erally also this predicate can be updated, but, if an element has been recorded it
cannot be forgotten4, so the predicate extension can be evolve only monotoni-
cally non-decreasing. In other words, we need to add the following axiom to the
DBox:

〈+, pastResidence〉

Moreover, assuming that we can admit that for some “special” people this re-
quirement about the historical memory must not be enforced, we need to restate
the previous axiom as:

〈+, pastResidence � Special〉

In the following we generally consider the ALCQI(t,u, �, �,4)-language as
in the definition of world specification/KB, as in the definition of DBox state
transition axioms. More specifically, we interested in the analysis of consistency
of state transitions resulting from the enactment of a generic service, in order
to provide a refined definition of service validity (and even repairability).

Definition 148 (Valid e-service (w.r.t. a DBox)). Let S be a full e-service, it
is valid w.r.t. a world specification W and a DBox D, iff:

4We are simply ignoring erroneous updates.
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• each effect E ∈ ES is consistent;

• for each legal world state ω, for each consistent input assignment σX, s.t.
the service is accessible in ω using it, there exists at least a legal state ω′

in the enactment and the transition ω → ω′ is allowed.

Definition 149 (Repairable e-service (w.r.t. a DBox)). Let ES be effects of a
non-deterministic e-service S, and let RS be the set of repairs for the service S.
S is repairable w.r.t. a world specification W and a DBox D iff:

• effects E ∈ ES are consistent;

• for each legal world state ω, for each consistent input assignment σX, s.t.
the service is accessible in ω using it, there exists at least a state ω′ in the
enactment and a repair R ∈ RS s.t. the repaired state ω′R is legal and the
transition ω → ω′R is allowed

Remark 51. In the follows we refer to validity and repairability properties w.r.t.
a DBox also as dynamic, while properties defined in previous chapters will be
also denoted as static.

It is trivial to conclude the following properties:

Proposition 6. A service S valid w.r.t. a world specification W and a DBox
D is also valid w.r.t. W.

Proposition 7. A service S repairable w.r.t. a world specification W and a
DBox D is also repairable w.r.t. W.

Let m and n be two suitable (i.e., cod(m) ∩ cod(n) = ∅) name mapping
functions on a domain specification 〈A,P,O〉 employed to embed two arbitrary
world states ω and ω′ into a structure ω̂ according the ways devised so far, given
a DBox D we define a new axiom schema ∆KBD(m,n) as reported in Table
7.1.

Remark 52. For the sake of brevity, if the first name mapping function is the
identity function id(x) = x, we simply omit it, denoting this axiom schema as
∆KBD(m).

The following claims that the devised framework is powerful enough to cap-
ture also this modeling aspect without any significant impact on the problem
computational complexity.

Theorem 98. Given a DBox D, a pair of world states ω and ω′ and struc-
ture ω̂ s.t. they are embedded into it according two suitable name mapping
functions m and n, then the transition ω → ω′ is allowed according to D iff
ω̂ |= ∆KBD(m,n).

Proof. We first assume that given such a transition ω → ω′ and the embedding
structure ω̂, the knowledge base obtained by the instantiation of the axiom
schema is satisfied in ω̂, but the transition is not a model of the DBox D.

In other words, there exists at least a dynamic axiom (concept or role, does
not matter) 〈s,E〉 ∈ D that is not satisfied over the state transition ω → ω′.
W.l.o.g., we assume that such a dynamic axiom is a role positive one in the
form 〈+, R〉, where R is a ALCQI(t,u, �, �,4)-role expression over the domain
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Table 7.1: The axiom schema ∆KBD(m,n)

∧
C=∈D

τ∗m(C) ≡ τ∗n(C) (7.2)∧
C+∈D

τ∗m(C) v τ∗n(C) (7.3)

∧
C−∈D

τ∗m(C) w τ∗n(C) (7.4)

∧
R=∈D

∀x, y.τ∗m(R)(x, y)↔ τ∗n(R)(x, y) (7.5)∧
R+∈D

∀x, y.τ∗m(R)(x, y)→ τ∗n(R)(x, y) (7.6)

∧
R−∈D

∀x, y.τ∗m(R)(x, y)← τ∗n(R)(x, y) (7.7)

specification alphabet. Since the axiom is violated, there must exist at least a
pair of elements 〈x∗, y∗〉 ∈ U × U, s.t. 〈x∗, y∗〉 ∈ Rω and 〈x∗, y∗〉 6∈ Rω′ . Since
both ω and ω′ are embedded into ω̂ using the name mapping functions m and
n resp., applying Theorem 92, we can conclude that:

Rω = [τ∗m(R)]ω̂

Rω′ = [τ∗n(R)]ω̂

Applying such results, we can also state that:

〈x∗, y∗〉 ∈ [τ∗m(R)]ω̂ \ [τ∗n(R)]ω̂

concluding that, according to standard semantics, at least the formula following
from the instantiation of axiom template in Equation 7.6 w.r.t. 〈+, R〉 does not
hold in ω̂, obtaining a contradiction that proves the first part of theorem. Other
cases can be shown in a similar way, so we omit them for the sake of brevity.

We now assume that the given transition ω → ω′ is a model for the DBox
D, but, despite of it, the structure ω̂, s.t. ω and ω′ are embedded into it, is not
a model of the instantiation of the given axiom schema.

According to this hypothesis there must exist at least a formula, obtained ac-
cordingly instantiating an axiom 〈s,E〉 ∈ D, that is not satisfied in ω̂. W.l.o.g.,
we can assume that such a formula is obtained by the instantiation of axiom
template in Equation 7.4 w.r.t. the dynamic axiom 〈−, C〉 ∈ D, where C is a
suitable ALCQI(t,u, �, �,4)-concept expression over the domain specification
alphabet. Since the formula is not satisfied in ω̂ there must exist at least an
element x ∈ U s.t., according to standard semantics, x ∈ [τ∗n(C)]ω̂ \ [τ∗m(C)]ω̂.
Since ω and ω′ are embedded into ω̂ we can apply Theorem 92, obtaining that:

Cω = [τ∗m(C)]ω̂

Cω′ = [τ∗n(C)]ω̂
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We can now conclude that Cω′ 6⊆ Cω and, hence, that the given transition is
not a model of the DBox. From this contradiction the claim follows. The proof
can be easily extended using the same argumentation to other cases.

Using this theorem, we can easily extends results provided so far simply
adding the adequate instantiations of the axiom schema ∆KBD(m,n) to the
reasoning problem encoding. Moreover, the constraint set size is clearly linear
in the length of the input, so the reduction is still polynomial and the problem
complexity results are also valid in this new scenario.

Remark 53. As discussed in Section 3.4, we are always assuming that active
domain is monotonically nondecreasing, or, in other words, that the DBox D
always contains the constraint 〈+,>〉 (or any equivalent form). This restriction
can be removed adjusting adequately the framework without altering significantly
results achieved so far. Moreover, it is quite obvious that the dynamic constraint
notion can be applied to general time-evolving knowledge representation systems
and it is not necessarily related to the service-oriented architecture.

Theorem 99. A consistent and accessible non-deterministic e-service S is valid
w.r.t. a world specificationW and a DBox D, iff the following implication holds:

KBP ∧ τ∗(W) ∧
∧

E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE)
)
|=∨

E∈E
τ∗mE

(W) ∧∆KBD(mE)

where mE is the name mapping function for the domain and the instantiation
variable names related to effect E ∈ E.

Proof. This claim is a refinement of Theorem 47, so we prove it only showing
additional parts.

We first assume that the given implication holds. Since the implication is
specialization of the implication in Equation 5.27, also the latter holds and,
according to Theorem 47, we can conclude that the service is valid at least ap-
plying the former definition. By contradiction, we assume that the given service
is not valid according the definition involving the DBox. In other words, that
there exists a legal world state ω and an input assignment σX s.t. any arbitrary
legal enactment 〈ω′E , (σ′Y)E〉, despite ω′ is valid w.r.t. W, the transition ω → ω′

is not allowed according to constraints in D. Given the isomorphism property
(see Theorem 23), we consider an enactment for any possible effect E ∈ E , and
employing the function µ(ω, σX,Λ) and suitable name mapping functions, we
build a new structure ω̂ that embeds world states and enactments. Applying
Theorem 45 and related results we can easily show that the antecedent of im-
plication is satisfied in ω̂, hence, since the implication is assumed to be valid
there exists at least an effect E∗ ∈ E s.t.:

ω̂ |= τ∗mE∗ (W) ∧∆KBD(mE∗)

On the other hand, applying Theorem 98 we must conclude that the transition
realized by the effect E∗ in ω is legal according to D (and also to W) and that
the given service is valid, obtaining a contradiction.
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Now we assume that the given service is valid w.r.t. both the world specifi-
cationW and the DBox D, but that the implication does not hold. Let ω̂ be an
interpretation structure s.t. the given implication is not verified: the consequent
is not satisfied despite the antecedent is. Since the hypothesis on the validity of
the service we can also apply Theorem 47 and according to Equation 5.27 we
can conclude that there exists at least an effect E∗ ∈ E s.t.:

ω̂ |= τ∗mE∗ (W)

On the other hand, since we have assumed that the implication is not verified
in ω̂ we need also that:

ω̂ 6|= ∆KBD(mE∗)

But, given Theorem 46 and related results, let ω and ω′ be the states embedded
into ω̂ given the enactment of the effect E∗, we have that ω → ω′ is a state
transition that, given Theorem 98, is not allowed w.r.t. D, contradicting the
initial hypothesis on the validity of the service.

Theorem 100. A consistent and accessible non-deterministic e-service S is
repairable w.r.t. a world specification W and a DBox D using a family of repair
RS = {R1, . . . , Rr}, iff the following implication holds:

∧
E∈E

(
∆KBI

n(TopmE
,mE) ∧∆KBU

c (mE) ∧
r∧

i=1

(
∆KBR

n (mE , nE,i)
))

∧KBP ∧ τ∗(W) |=
∨

E∈E

r∨
i=1

(
τ∗nE,i

(W) ∧∆KBC
n (mE , nE,i) ∧∆KBD(nE,i)

)
(7.8)

where mE and nE,i are the name mapping functions for the domain defined for
any effect E and for any repair Ri.

Proof. The prove of this claim is quite similar to the previous one, considering
that, since the whole enactment spans from the initial (ω′) to the final repaired
state (ω′′), the DBox is evaluated w.r.t. these ones. In other words, the selected
repair must be able to eventually obtain a final state that is consistent w.r.t.
both static W and dynamic D constraint sets.

We first assume that the given implication holds. Since the implication is
specialization of the implication in Equation 5.43, also the latter holds and,
according to Theorem 52, we can conclude that the service is repairable at least
applying the former (static) definition that ignores dynamic constraints. By
contradiction, we now assume that the given service is not repairable accord-
ing the definition taking also them into account. In other words, that there
exists a legal world state ω and an input assignment σX s.t. any arbitrary le-
gal enactment 〈ω′, σ′′Y〉, despite ω′′ is valid w.r.t. W, the transition ω → ω′′

is not allowed according to constraints in D. Also in this case we can apply
the isomorphism property of successor states and, hence, consider a repaired
enactment for any possible effect E ∈ E and suitable repair Ri ∈ RS , as repre-
sentative (witness) of a possibility infinite set. Let Λ = {〈, ω′E , (σ′Y)E〉|E ∈ E}
and Ω =

{
ω′′E,i|E ∈ E , Ri ∈ RS

}
be resp. the set of candidate enactments and

repaired successor states, we employ the function µ(ω, σX,Λ,Ω) to obtain a new
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structure ω̂ that, according to Lemma 38, embeds these states and enactments.
Applying Theorem 50 and related results we can conclude that ω̂ satisfies an-
tecedent of implication and since we have assumed that this implication is valid
there exists at least an effect E∗ ∈ E and a repair Ri∗ ∈ RS s.t.:

ω̂ |= τ∗nE∗,i∗
(W) ∧∆KBC

n (mE∗ , nE∗,i∗) ∧∆KBD(nE∗,i∗)

On the other hand, applying Theorem 98 we must conclude that the transition
ω → ω′′E∗,i∗ realized by the effect E∗ and repair Ri∗ a model of D (and also
to W) and that the given service is repairable, obtaining a contradiction, that
proves the first part of the claim.

Now we assume that the given service is repairable taking into account both
the static W and the dynamic D specifications, but that the implication does
not hold. Let ω̂ be an interpretation structure s.t. the given implication is not
verified: the consequent is not satisfied despite the antecedent is. Since the
hypothesis on the repairability of the service, we can also apply Theorem 52
and according to Equation 5.43 we can conclude that there exists at least an
effect E∗ ∈ E a repair Ri∗ ∈ RS s.t. the corresponding successor state is valid
and the repair is consistent with the update. In other words, we have that:

ω̂ |= τ∗nE∗,i∗
(W) ∧∆KBC

n (mE∗ , nE∗,i∗)

On the other hand, since we have assumed that the implication is not verified
in ω̂, we need also that:

ω̂ 6|= ∆KBD(nE∗,i∗)

But, given Theorem 51, let ω and ω′′E∗,i∗ be the states embedded into ω̂, given the
enactment of the effect E∗ and the repair Ri∗ , we have, according to Theorem
98, that ω → ω′′E∗,i∗ is a state transition not allowed w.r.t. D, contradicting the
initial hypothesis on the repairability of the service.

Given the previous results, it is easy to conclude that the upper bound of
problem complexity is not affected by this framework extension, since the en-
coding of the DBox is essentially linear in the size of the specification. Moreover
also other properties can be adequately adjusted to keep into account this new
class of domain constraints.

7.3 Conclusions

In this chapter we have devised two interesting extensions of the specification
language in order to deal with complex role and dynamic constraints. In partic-
ular, the latter kind is useful to capture a relevant subset of concrete modeling
language primitives (i.e., UML) providing a formal foundation and a decidable
(and eventually feasible) checking procedure.

These extensions have been introduced to accordingly enrich the description
logic and to show how, given a suitable semantics, they can be also encoded using
the working logic C2: in this case we have observed that these new constructs
do not affect the computational complexity upper-bound. Both extensions can
be employed simultaneously, so we can build a rather powerful and expressive
e-service analysis framework.
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We point out that these extensions are not necessarily restricted to this
framework, but they can be easily generalized to be integrated also in other
approaches. More specifically, the devised DBox notion is rather general and it
is suitable to be included in a dynamic setting for Description Logics as well as
extending the approach to include also execution-path constraints in the fashion
of temporal logic languages (i.e., linear and branching time).
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Conclusions

As shown in the previous chapters, a number of functional properties of e-
services relevant in the design of a service-oriented integration solution can be
traced to a logic characterization, once a suitable operational semantic model is
provided, based upon the enforcing of the service contract.

The main contribution of this work is to show how it is possible to reason
about action consequences w.r.t. a complex domain constraint specification,
even adopting a semantics of minimal change. While the proposed approach is
sound, in the sense that the repairs obtained are correct, it is also not complete,
in the sense that the decidability of the problem can be obtained only by re-
nouncing to the search in the whole solution space. However, we have shown the
semantic well-foundedness of the repairing options considered by our approach.

We have exhibited, as many other authors, that formal tools available in
various fields of computer science can be employed to cope with issues arising
in the context of service-oriented computing, but we also claim that they need
to be adequately tuned in order to keep into account some functional aspects
that distinguish e-services from other distributed computation paradigms, due
to their higher level of abstraction. On the other hand, XML web-services and
related technologies per se are only another integration middleware, especially
suited for being employed in Internet (or Internet-like) networks. However, to
fully exploit the potential of such a kind of pervasive computing milieu, they
need to be enriched with an adequate semantic specification.

We have provided the formal foundation of the devised framework, intro-
ducing several decision problems that turn to be useful in order to deal with
classic tasks (e.g., validation, matching, discovery, fault-management) as well
with more peculiar ones (i.e., coverage analysis) in the construction of service
oriented solutions. We have formally analyzed such problems, encoding them
into reasoning problem instances using a decidable logic language, allowing us
to characterize their computational complexity properties.

Although implementation issues are outside the scope of the present work,
it is also possible to sketch a suitable strategy to effectively employ the results
provided so far. In particular, the problem reduction approach adopted in the
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construction of the framework enable to prototype a reasoning meta-service by
means of:

concrete specification language, that is suitable to encode arbitrary world
specifications, in terms of alphabets, static and dynamic constraints, ser-
vice and template specification: this language can rely on the XML and
Semantic Web stack, eventually leveraging upon a repository manager,
that actually acts as a semantic e-service directory, and an end-user edi-
tor tool;

semantic e-service specification parser(s), eventually, a collection of parsers
that are able to analyze concrete specifications, not necessarily with se-
mantic annotations, provided using different standard languages as WSDL,
OWL/OWL-S, WSML, or even UML, and to import them into the repos-
itory: the most critical aspect in the design of this component is the ca-
pability to ignore irrelevant fragments that usually enrich these artifacts,
so a computer-aided reverse-engineering tool appears to be more feasible;

problem encoder, that is able to encode a reasoning problem instance given
a domain and a service specification essentially implementing the axiom
schemas presented in this work;

C2-reasoner, that provides the inferencing services: despite such a kind of
specialized component is not currently available, we can of course employ
one of the several first-order automated theorem provers so far imple-
mented, as [RV01, Sch04, Kal01, HBVL97, RV02], even though they do
not necessarily exhibit optimal performances (at least, without a specific
search-algorithm tuning).

Finally we remark that, given the high complexity of the studied problems, a
crucial issue, to arrive at an effective tool based on the presented framework, is
to adequately tailor the specification languages, in order to isolate sub-languages
for which the relevant reasoning problems are tractable. Besides, it is also inter-
esting to investigate the approximation of properties studied so far, because also
a non-complete approach may show up as useful in some application contexts,
once a suitable semantic characterization has been provided.

8.1 Comparison with Related Work

In the following, we summarizing some observations comparing our framework
to more interesting approaches resulting from the state-of-the-art analysis pre-
sented in Chapter 2.

8.1.1 Planning

Considering the application of the planning technology to e-service problems,
we remark that the defined framework conceptually resembles many approaches
to composition proposed by this research community. In fact, these approaches
share an emphasis on the operational nature of actions described as e-services.

For example, in approaches based on situation calculus, like the one based on
Golog and presented in [MS02], an abstract specification of service composition
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(process), expressed as a template of a conditional plan, is given as problem
input, while the system aims at verifying if the available services are applicable
and sufficient to instantiate the execution in order to achieve a specific goal. Our
goals are slightly different: essentially we are interested in the characterization of
the suitability of a set of available services for a class of abstract goals, not only
ground ones. But we are also interested in the explicit definition of functional
compatibility between services, on which the binding relies during the process
instantiation.

Other approaches, like [McD02, Pee03b, APY+02], are essentially based on
the reduction of the problem of orchestration of available e-services finalized
to achieve a user goal to a corresponding planning problem, suggesting various
techniques (i.e., estimated-regression planning) in order to devise the operation
scheduling or a more complex conditional plan.

These approaches are unable to cope with the service matchmaking problem,
since they naively assume that the whole available service community is pre-
compiled into the planning problem domain definition. Despite it could be
technically feasible, these approaches are unable to support dynamic service
lookup, which can be useful to discover, at execution time, a replacement for an
unavailable provider, binding it on-the-fly.

Moreover, the high expressiveness of planning domain specification languages
(required by the complexity of the application scenarios) usually prevents the
possibility on a consistency analysis. Indeed, there is a general assumption
of the correctness of the specification and instead of domain constraints (as
generally intended in the design of information systems) we have the ability to
encode using rules arbitrary action consequences, even indirect. In terms of a
model update approach, there is the foundational assumption that action effects
are always consistent and that a locally performed action can trigger a global
model “repair” enforcing domain specification rules. Roughly speaking, while
rules employed in the most common planning approaches to describe the domain
in terms of action consequences are essentially a sort of forward chaining effect
propagation, update repair is more similar to a backward chaining process that
indirectly gets from domain constraints the required side-effects.

On the other side, more general approaches to action formalization, as sit-
uation calculus, have been also employed to reason about update and integrity
constraint interactions ([Rei92]): in fact, the property persistence problem, that
means how to formalize and keep into account world state properties that always
hold during the evolution of the system, is deeply connected to the frame prob-
lem. The main issue is related with the expressiveness of the language required
to axiomatize the constraints implied by the domain requirements.

From the planning perspective, these language features are essentially a tool
to explicitly stating system properties in order to automatically deduce action
side-effects: this approach is quite similar to the update-repair in data/knowledge-
based systems, since a side-effect can be considered as a repair induced from the
enforcing of a domain constraint. As in the present approach: an action can be
performed if its effects are compatible with persistent system properties or, in
other words, if there exists a resulting system state where both action effects
and system properties hold. Under a typical planning setting, the presented
approach can be considered as a kind of approximated tool to deal with incom-
plete specifications enforcing a minimal-change semantics. Since this problem
is unsolvable, given the necessity to employ second-order axiomatizations, we
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bound the repair search space considering a finite family of syntactically gen-
erated repairs, showing how it is possible to implement a strategy that selects
the nearest repair w.r.t. the model distance function. In other words, since the
incompleteness of the approach, the following situations can eventually show
up:

• a service is detected as not-repairable but a suitable repair exists outside
the search space;

• a service is repaired using a syntactically generated repair, but there ex-
ists a closer repair that can not be taken into account by the provided
algorithm.

Despite there exists also some interesting proposals (e.g., [BAF98, KU99])
to the automation of the property checking procedure1, there does not exist
any strong tractability result, provided that in the general case the problem is
undecidable. This property ([KP07]) stems out essentially from the possibility
to employ an unrestricted first-order language to express domain constraints (or
uniform formulas according to [PR99]). An interesting point is the possibility to
combine a decidable constraint language (e.g., a DL) and a decidable situation
calculus: do they result into a decidable action framework (at least for properties
discussed so far)?

8.1.2 Synthesis

Considering the problem of service synthesis, some other conceptual limitations
of the feasibility of planning technologies are analyzed in [CST03]: generally
speaking, while (conditional) planning algorithms are devised to compute an
actual action scheduling for achieving goals, service aggregation requires the
ability to derive application specifications combining available functionalities,
i.e., devising a specification of a target complex mediator that essentially reuses
the application logic of the provided services. Such a problem is addressed in
works like [FBS04a] and [BCD04], unified into a common framework [BCD+05],
which provides an algorithm suitable for automatic e-service synthesis. Like in
our approach, the concept of atomic/primitive basic service is defined by the
specification in terms of its own effects on the state of the world intended as a
relational theory, and the frame problem is addressed using model update opera-
tors. More complex services, that include stateful interaction and multiple oper-
ations, are also representable using an annotated finite-state guarded-transition
automata: such a model is used to describe available and target services. How-
ever, there are some remarkable basic differences:

• there are no preconditions, excepting these deriving on automata state,
services are generally accessible and activable, so the contract specification
is weaker, despite automata transitions allow guard conditions on transi-
tions that could be feasible for implementing some kind of restrictions;

• the integrity constraints play a quite different role, since they are not used
to enforce model repair or service consistency check (a service is always
well-defined);

1As the present framework, they relies upon a first-order logic theorem automated prover.
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• in order to ensure the decidability of automatic synthesis problem, the
closed-world assumption is required.

Generally speaking, two frameworks agree upon the foundational aspect that
e-service automation problems are related to the exploitation of available capa-
bilities into complex process, from which matchmaking and verification problems
arise. In other words, the proposed approach can be integrated into a more gen-
eral service synthesis solution in order to provide semantic-based consistency
and capability analysis tools. In order to achieve such a kind of result, a further
extension is required to deal with stateful complex e-services.

In fact, from a service composition algorithm perspective, the proposed ap-
proach to deal with properties and issues of system transition by means of
embedding different system states and their relations in an adequately enriched
structure on which employ reasoning techniques can be extended further to
verification of correctness and functional properties as presented in this work.
Moreover, until the branching degree of the computation paths is finite as well
as the path length, the embedding approach can be extended to longer com-
putation in order to check properties of a complex composition. We point out
that the finiteness requirement is critical, since we need to extended the alpha-
bet used in definition the working structure proportionally to the number of
execution branches.

8.1.3 Verification

The problem of complex service verification and analysis w.r.t. the evolution
of the world state is also addressed in similar works based upon the notion of
relational transducers (e.g., [DSV04, Spi00]). However, in these works, a single
complex service, that operates on a relational database, is analyzed in order to
derive some correctness properties. Various equivalence/containment properties
(e.g., w.r.t. the interaction protocol, the log/storage evolution, etc.) are also
proposed. As discussed in Section 2.2.6, an operational semantics based on the
update of the relational theory is used, but constraints on the interaction are
only based on state automata, services are generally accessible, and there is no
way to enforce applicability preconditions.

A lot of other verification approaches, based upon formal tools like model
checking, logic programming, Process Algebra and Petri nets, are also pro-
posed for e-service applications by many authors (e.g., [Mar03, GTL00, HB03,
Nak02, PC03, KvB03, CRR02, FBS04a, Wal04, DKR04, PR04]), often coming
from the business-process and work-flow modeling fields. Such approaches are
mainly focused on the analysis of the interaction protocol among actors in var-
ious network configurations, but generally they do not enforce any assumption
about the semantics of the performed operations. We generally assume that
interaction and acting behavior verification can be done separately, at least for
some properties. On the other hand, however, the adoption of highly expres-
sive process languages, like PSL ([S+99]) or colored Petri nets ([vdA98]), allows
for the definition of arbitrary behavior constraints, but also requires high-order
logical reasoning frameworks, in which all relevant reasoning problems are unde-
cidable. In more sophisticated settings, that accordingly shape the specification
language, semantic consistency properties can be verified also for some complex
process specifications ([NM02]).
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Notably, other approaches based on Description Logics have been devised
essentially to deal with the inventory and discovery problem (service catalog
and matchmaking), but also a remarkable proposal to include update operators
in a rich knowledge description framework has been presented in [BLM+05a]
and [WL06].

As previously stated, this approach shares with the present one many com-
mon aspects, despite they differ substantially on technical details. The most
important point to remark is that in this framework we adopt a decidable but
incomplete update repair strategy allowing for arbitrary knowledge base specifi-
cation, while in [BLM+05a] and related works only restricted TBoxes (despite of
expressive languages) are tractable in order to preserve the decidability. More-
over, while in the present approach we have adopted a knowledge representation
paradigm as a tool to model an information system, so we are reasoning on all
possible computation paths, but we are assuming that the system has only a
model at time, in other one, the attention is focused essentially on the update
of the knowledge base. In other words, the action formalism is devised in order
to deal also with the problem of express using the same language the knowledge
base resulting from the update, assuming that it is a concisely denote a family
of models. Despite it can turn more useful in knowledge-based application, it
also clashes with general assumption adopted in the design of cooperative in-
formation systems, where a system state is required to be completely defined,
while the available specification can be only partial. In fact, in the respect of
source of incompleteness, while we are dealing with incomplete service and state
incomplete specifications at design-time, assuming that at run-time the system
state is completely defined, in [BLM+05a] the system state considered to be
generally incomplete, since the approach is oriented toward knowledge revision
applications2.

Also considerations presented in the analysis of knowledge-based planning
approaches can be reported in this case. In fact, from the perspective of the KB
update-repair, in the presence of incomplete specification, the devised solution
is clearly an approximation that allows us to deal with a problem that is in
general unsolvable. Despite the incomplete search strategy can miss an effec-
tively repairable service, we point out that, on the other side, the syntax-driven
repair generation approach should generally consider updates that are “closer”
to the user target, since it acts locally w.r.t. the updated model, i.e., affecting
instances involved in the user request. While it is possible to tune this approach,
shaping down the search space introducing also a locality definition in terms of
intensional specification (e.g., repairing only certain names given the updated
ones), an open issue is whether other wider search strategies can be employed.
A first possibility is to extend the generation procedure to keep into account
also access function queries, since they preserve the fact that an atomic repair
involves at most an element or pair.

However, while there are other approaches based on DLs explicitly focused
on dynamic properties, to the best of our knowledge, the present framework is
the only proposal that includes also the ability to deal with transition-related
constraints (i.e., dynamic constraints). This aspect is, moreover, also interest-
ing from the perspective of conventional approaches in automated verification,

2Interestingly in approaches like [GMP04], is the domain specification considered as in-
complete (e.g., missing constraints). However, this approach is inherently static and hence it
does not address any of issues related to update and repair.
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since, despite they adopt some kind of temporal logic to define complex path-
related system properties to check, these languages, generally, allow to easily
deal essentially with system states formalized in a propositional language.

8.2 Further Work

Starting from the results achieved in the present work, in order to extend the
proposed framework in terms of modeling and analysis tools, we are working on
the following topics:

1. refining the analysis of the formal properties of the automated reasoning
tasks defined in our framework, in particular the ones involving enhanced
e-service specification and functional property analysis (e.g., establishing
additional complexity lower-bound, analyzing the expressiveness boundary
of the working language);

2. extending the domain expression language in order to allow for some kinds
of role-based constructs, that are generally not satisfactorily addressed by
Description Logics;

3. investigating further on the devised notions of replaceability and functional
comparability: while the former could be eventually reduced to quite sim-
ilar concepts in the field on temporal/action reasoning, the latter is more
innovative, at least in the application to the e-service domain, and needs
to be adequately assessed;

4. refining the analysis of language constructs in order to shape out some
more easily tractable fragments w.r.t. their computational complexity
that are also interesting in terms of applicability to real-world problems.

Moreover, in order to devise a more reliable toolkit to support system in-
tegration engineering, we are also interested in the assessment of the proposed
framework w.r.t. an industrial validation protocol for e-service modeling propos-
als, in order to point out the most relevant topics when dealing with real-world
problems (in particular, in e-government and virtual-enterprise application sce-
narios).
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Springer-Verlag LNCS 711. B.2

[FBS04a] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting
BPEL web services. In Proc. of the WWW 2004 Conference, New
York, NY, 2004. 2.2.8, 8.1.2, 8.1.3

[FBS04b] Xiang Fu, Tevfik Bultan, and Jianwen Su. Model checking XML
manipulating software. In Proc. of the International Symposium
on Software Testing and Analysis (ISSTA 2004), pages 252–262.
ACM Press, 2004. 2.2.8

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. Technical report, Internet Engineering Task Force,
June 1999. 2.1

253

http://www.unece.org/trade/untdid/


BIBLIOGRAPHY

[FIP99] Foundation for Intelligent Physical Agents. FIPA Specification
Part 2 – Communication Language, 1999. 2.2.7, 2.2.7

[Fis01] Bernd Fischer. Deduction based component retrieval. PhD thesis,
Univesität Passau, Nov 2001. A.2

[FLMS99] Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu.
Query optimization in the presence of limited access patterns. In
Proc. of the 1999 ACM SIGMOD International Conference on
Management of Data, pages 311–322. ACM Press, 1999. B.1

[FLP+03] Renato Fileto, Ling Liu, Calton Pu, Eduardo Delgado Assad,
and Claudia B. Medeiros. POESIA: An ontological workflow
approach for composing web services in agriculture. The VLDB
Journal, 12:352–367, 2003. A.3, 1

[G4B04] Progetto G4B: Government for Business. http://www.g4b.it/,
2004. in Italian. 3.1, 4

[GHM+03] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques
Moreau, and Henrik Frystyk Nielsen. SOAP version 1.2. Rec-
ommendation, World Wide Web Consortium (W3C), June 2003.
A.1.2

[GHS96] Gerd Große, Steffen Hölldobler, and Josef Schneeberger. Lin-
ear deductive planning. Journal of Logic and Computation,
6(2):233–262, 1996. B.2

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987. B.2

[GL93] Michael Gelfond and Vladimir Lifschitz. Representing action
and change by logic programs. Journal of Logic Programming,
17(2/3):301–321, 1993. 2.2.10

[GM05] Stephan Grimm and Boris Motik. Closed World Reason-
ing in the Semantic Web through Epistemic Operators. In
Bernardo Cuenca Grau, Ian Horrocks, Bijan Parsia, and Pe-
ter Patel-Schneider, editors, Proc. of the Workshop on OWL:
Experiences and Directions (OWLED 2005), Galway, Ireland,
November 11–12 2005. 2.2.13, 6

[GMP04] Stephan Grimm, Boris Motik, and Chris Preist. Variance in e-
Business Service Discovery. In David Martin, Rubén Lara, and
Takahira Yamaguchi, editors, Proc. of the ISWC 2004 Workshop
on Semantic Web Services: Preparing to Meet the World of Busi-
ness Applications, volume 119 of CEUR Workshop Proceedings,
Hiroshima, Japan, November 8 2004. 2.2.13, 6, 2

[GMP06] Stephan Grimm, Boris Motik, and Chris Preist. Matching Se-
mantic Service Descriptions with Local Closed-World Reasoning.
In York Sure and John Domingue, editors, Proc. of the 3rd Euro-
pean Semantic Web Conf. (ESWC 2006), volume 4011 of LNCS,
pages 575–589, Budva, Montenegro, June 11–14 2006. Springer.
2.2.13, 3.1, 6

254

http://www.g4b.it/


BIBLIOGRAPHY
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APPENDIX A

Service-oriented applications

In the following we briefly analyze the structure of a service-oriented application
and the related development and maintenance process, in order to provide a
general introduction to the subject and to point out most relevant formalization
aspects.

In the service-oriented application development framework three distinct
roles (or actor types) has been identified:

service providers that implement, publish and provide a service to other
members of the community;

service directories that manage directory of available services provided by
some members in the community;

service requestors that consult directories, discover relevant services and ac-
cess them to achieved their own goals.

The same agent in the community can play different roles at the same time:
it could provide a service, while it consume other ones published by another
agents.

In such a context, the development of a service can be achieved in various
ways:

• by encapsulation and publishing of a pre-existing functionalities available
in a software system (i.e., an EIS);

• by composition and integration of already available services in order to
provide a more complex and value-added service.

Generally speaking, moreover, the service composition tools, employed during
various phases of application life-cycle (e.g., analysis, design, implementation)
and at different levels of abstraction, play a critical role and are a peculiarity
of this computation paradigm. For this reason, in the rest, we pay a special
attention to these respects, since many of its characteristics are interesting in a
general discussion about e-services and their applications.
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Figure A.1: The reference model for a service-oriented system

We remark that, in terms of economic feasibility, an actor that provides ser-
vices by composition of other ones, in order to motivate its own offer, must be
able to provide additional value to potential customer/client ([YP00]). More-
over, the composition strategy itself is the main value, since it save the clients
the trouble of locating, discovering and integrating atomic available services1.

A.1 Service modeling

In the following we briefly analyze the approach to the e-service modeling prob-
lem, in terms of paradigms (how it has to be modeled) and arguments of the
representation (what has to be modeled).

A.1.1 Modeling paradigms

There are different approaches on how an e-service can be formally represented
([Bat03]): the selection of the right one depends upon many aspects, in partic-
ular the goal of the modeling activity and its context.

black-box This approaches requires that only accessible service interfaces have
to be specified and that their properties are stated without any dependen-
cies with the actual implementation. It is, of course, the most powerful
approach to service modeling, because it ensures the highest degree of en-
capsulation but, at the same time, it is also the most complex to correctly

1We generally employ the term of meta-service to denote a service that act on other
services. E.g., a directory of services exposes itself as a service that allows the client to locate
and matching a suitable service. Also composition tools can be treated as a category of
meta-services.
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adopt and employ, since it is not always possible (or convenient) ignoring
any implementation details, as it is difficult to capture and define exactly
the service semantics in a completely abstract way. More specifically, the
ability to deal with (nearly) black-box specification is a high desirable
feature of any e-service framework.

white-box This approach is the opposite of the latter, since it is requires that
any relevant implementation detail has to be exposed: in other terms,
the service is specified by means of its own implementation. Despite the
problem that such an approach does not ensure a significant form of encap-
sulation or information hiding, compromising the autonomy of the service
provider, generally many implementation details are not very relevant, but
since they cannot be filtered out, they overweight the specification leading
to intractable problem instance (the degree of abstraction is rather low).

grey-box This other approach mixes the previous one, using a white-box to
expose the high level specification elements and a black-box model to de-
scribe simple properties. The classical approach of modeling a complex
service as a composition specification of other services is a typical case of
grey-box: the composed services are the black-box part, while the orches-
tration specification is the white-box part.

glass-box This approach is, instead, based on the idea to specify a service
in terms of a process that is equivalent w.r.t. the observed behavior, de-
spite the implementation can be different. This process can be assimilated
to a white-box representation that actually omits irrelevant implementa-
tion details w.r.t. the correct service behavioral semantics specification
([HB03]).

A.1.2 Modeling aspects

The description of an e-service can involve different aspects that turn out to be
relevant in the design and development (and also in the delivery and manage-
ment) of an application based on the SOC paradigm.

In the development of web services and cooperative information systems
(e.g., EAI, BPI, e-government) many standards have been proposed and adopted,
leading also to a babelization that is the main obstacle to an effective widespread
of this kind of solutions. Moreover, some proposals cover different aspects, hence
they are not easily directly comparable.

Interface The service interface is, essentially, a specification of the set of op-
erations exposed by the service and the corresponding accessing directive
(as a generic software components), or, in other terms, the specification
of the message language that is possible to employ to build a conversation
among the service and various involved actors (as a software agent). The
more relevant (standard) languages employed to define a service interface
are: WSDL ([CGM+04]), WSCI ([AAF+02]), XML Schema ([TBMM01]),
CORBA IDL ([OMG04]), DCOM IDL ([DCO]). This aspect also covers
the problem of the representation and the structure of exchanged infor-
mation during an enactment, and the processing strategies. In the case
of XML web service, given original aims of access protocol design (i.e.,
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SOAP [GHM+03]) as state-less protocol, it is also interesting the problem
of modeling the link (i.e, correlation) among different messages exchanged
in a specific conversation or enactment instance.

Access This aspect essentially covers how the communication path from and to
a service has been implemented. As other networking scenarios, protocols
build actually a stack and can be distinguished on different levels:

Message transport protocol Network protocols that can be employed
to deliver a message from an actor to another one: e.g., HTTP,
SMTP, RPC, RMI/IIOP, MQSeries, MSMQ, DCOM.

Message format protocol Languages that specifies how messages and
information items must be formatted and represented: e.g., SOAP,
RMI/IIOP, XML, XML Schema.

Content format protocol Languages and set of constraints (e.g., of a
specific application domain) that define how the information payload
must be described and instantiated, often specifying at least an in-
formal shared semantics: e.g, RosettaNet ([Ros]), EDIFACT ([EDI]),
ebXML ([ebX03]).

We remark that, generally, there is no distinction between the message
transport and format levels (i.e., DCOM, CORBA, RMI). This distinc-
tion, that has been introduced in the ISO/OSI stack ([Zim88]) uncoupling
the application data representation from the network transportation mech-
anism, has been re-proposed in this field by XML web service through the
concept of mediated protocol2. Other standards, such as RosettaNet, im-
pose some restrictions on message formats and transport protocols that
are allowed (and eventually specifying how to employ them in a coherent
manner).

Composition This aspect is related to the specification of the integration and
cooperation modalities of services aiming at exposing a kind of value-added
functionality. Reference models elaborated to address this specification
aspect can be classified into two main classes:

work-flow based composition, that models the service composition as
a complex process orchestrated by a central coordinator or broker,
that is, generally, the actor providing the composed service. This
model class essentially derives from application of Work-flow Manage-
ment Systems (WfMS) concepts and languages ([vdAvH04]) and in-
cludes standards as XLANG ([Tha01]) and BPEL ([ACD+03]), that
are actually the more influencing in the industry and research com-
munity;

choreography based composition, that aims at modeling the compo-
sition as a complex conversation among various actors (expressed
in terms of exchanged messages) that does not necessarily requires
a specialized element delegated to act as a central coordinator. In

2Interesting, XML web services can be assumed as an implementation of the presentation
layer of the ISO/OSI stack, since they provide a platform-independent representation of the
exchanged data.

270



APPENDIX A SERVICE-ORIENTED APPLICATIONS

this case a peer-to-peer architecture is more suitable (e.g., WSCDL
[KBR04]).

As previously discussed, in the modeling of a service composition, we
need not only a formal tool to represent tout-court the structure of the
composed service, but it is important also the ability to deal with the
following characteristics:

Target The goal of the composed service.

Constraints The conditions, possibly deriving from some general/domain-
level rules, that the composition must satisfy in order to be admissi-
ble.

Quality criteria The rules that allow to rank admissible compositions
w.r.t. the level of quality of the provided service and eventually select
an optimal one.

Architecture The architectural model of the system that provide the
composed service.

Partner management criteria The specification of the nature of part-
ner links (static/dynamic, short/long term) and the modalities em-
ployed in discovering, selecting and contracting the partner, both at
technical and business level.

It is worth noticing that many of these characteristics can be also employed
to better define also atomic e-service: in fact, such a kind of service can
be also treated as a special case involving a single provider.

Offer This aspect concerns the representation of aims that a service purposes
(according to the user perspective), in terms of resources, quality level,
access rules and constraints. This element of service modeling is generally
addressed by directory registration languages, e.g., DAML-S ([BHL+02]),
OWL ([SWM04]), OWL-S ([MPM+04]), UDDI ([BCvR03]), WS-Policy
([BBC+04]), since it is the core of the service publishing task. Moreover,
the definition of offered service, should also include business elements as
fees, payment methods, SLAs, etc. In order to deal with high level speci-
fication issues, we need to employ a suitable semantic model, once a more
expressive languages as DAML-S or OWL-S has been introduced3.

Demand This is the dual aspect of the latter, mainly concerning the repre-
sentation of user commitments, goals and constraints. The representation
of service demand can generally be treated as a kind of complex query
on the service directory aims at discovering one or more service suitable
for the user needs. While there are different tools for the management
of service offer, there only some initial proposals of approach to demand
management as the WS-Inspection ([BBM+01]) standard that allows to
browse (and querying in a limited way) an UDDI catalog. Also the UDDI
specification provides a specialized API (exposed as XML web service, of

3The main problem dealing with service semantics is not the lack of adequate expressive
power, but the agreement on a semantics model. Not surprisingly, as will turn out in the
rest, many different, and often incompatible, approaches exist, and none is clearly better
than others, since each one exhibits some interesting properties to address problems arising
in specific scenarios.
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course) to manage and browse the contents of a catalog. As in the latter
case, DAML-S and OWL-S can be employed to deal with this aspect. It
is worth of noticing, that the representation of both demand and offer in
a service marketplace must agree on a foundational semantic model.

Context It is related to the specification of characteristics of different appli-
cation domains (i.e., vertical market application) or, in other words, to
the specification of standard/agreements to employ in a specific context
expressed in terms of:

1. information representation (e.g., message structure and format);

2. domain objects and available operations;

3. conversation patterns.

Many B2B standardization proposals can be employed to deal with these
modeling aspects as, e.g., xCBL ([xCB]), BizTalk ([Biz]), E-Speak ([Kar03]),
cXML ([cXM]), ebXML, Commerce XML [cXM], RosettaNet, EDIFACT,
as many e-government integration frameworks as well4. Moreover, the
specification level is generally strongly not homogeneous, since these frame-
works often introduce constraints on different stack levels and on some
implementation elements (e.g., limiting the transport level options or im-
posing a specific document physical format). However, a wider adoption
of these models should help the integration of different operators and the
development of composed value-added services, since the standardization
process leads to uniform the information representation model and to share
at least a primitive operation set. The main problem in the adoption of
such a kind of framework relies in the high complexity of specification
and related implementation that are not economically feasible for small or
medium organizations, while the rigidity imposed by existing technologies
often conflict with the need of dealing with extemporaneous and accidental
business cases.

A.2 e-service development and delivery

The development of a service-oriented application, that is based on the frame-
work depicted in previous sections or simply provides some e-services to a coop-
erative community, requires some specific tasks during both the design/implementation
and the delivery life-cycle phases.

Indeed, given the quite dynamic nature of such a kind of software system,
the border between typical design and run-time tasks and features can not be
sharply outlined, but it can differ in various scenarios. Moreover, actually avail-
able middleware solutions, even based on service-oriented paradigm as XML
web-services, adopt an almost static approach, using these stacks only as en-
hanced encapsulation and remote access tools: in other words, most of applica-
tions use XML web services essentially as an Internet-ready RPC mechanism.

4Considering the Italian scenario we have a main standardization initiative concerning the
cooperative environment and middleware [CNI05b, CNI05a, CNI05c], and several projects
focused on the modeling and standardization of service functional aspects, mainly oriented
w.r.t. the application domain ([G4B04, Peo05]).
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Typical features required in the development and delivery of service-oriented
applications are classified as the followings:

Discovering and Matchmaking It is the ability to locate an available service
having specified features/characteristics or, in other terms, to evaluate the
adequacy of a given service w.r.t. a set of requirements/constraints. This
element is rather relevant both in the design/implementation phase of an
application. In fact during the design phase, analogously to component
catalog/directory ([AG97, PA99, Fis01]), we need to provide some tools to
help the service lookup activity (allowing for a suitable query language):
such an element is generally defined in an incomplete/astract way stem-
ming from application requirements. Moreover, in the delivery phase the
ability to dynamically select a service instance to perform a specific task
(or achieve a given goal) is fundamental5 in order:

1. to ensure a higher fault tolerance degree of the integrated system: in
case of unavailability of a service instance during an enactment, it
is possible to employ a meta-service that locates a suitable backup
provider ([CIJ+00]), reducing the dependability;

2. to allow for the adaptation of the service delivery (context aware-
ness) to actual execution environment: in case of mobile user, it is
possible for a location-based service to select the nearest provider or
the provider that better fits the user preferences;

3. to select among many service providers that are “equivalent” in terms
of exposed functionalities the one that ensures the better quality level
according to given criteria/constraints (e.g., quality/price ratio);

4. to specify composed/integrated service abstracting from service in-
stances actually available (e.g., using class/template).

Synthesis It is the ability to obtain in an assisted or completely automatic
manner the specification of a complex/composed service to achieve a given
goal, using a community of pre-existing services. This kind of task is simi-
lar to the automatic program synthesis ([MW71]) and the action plan gen-
eration ([KS03]) problems, considering some additional constraints such
as:

1. available information are incomplete, in most cases the information
needed in order to complete the enactment is available only at run-
time;

2. managed information are often described using very complex data
structures;

3. the typical encapsulation level provided (aimed) by service-oriented
approaches leads to hide the system state data that are generally
required during the planning step;

4. the kind of synthesis goal can be more complex than the simple sys-
tem configuration reaching;

5The inability to specify in a flexible, that is to say dynamic, manner the link to service
providers in composition specification languages as BPEL and its evolutions is in the facts
one of main limitations of actually available integration technologies ([MM03]).
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5. there is a major emphasis on the reuse of software elements that
implement fragment of the business logic.

Orchestration This feature is intended as the ability to monitor and control
the execution of complex/composed service enactments. Despite this kind
of task is under some perspectives assimilable to traditional work-flow
and distributed transaction management, in case of composed service or-
chestration there exist some specific problems ([Kal03]) that are generally
ascribable to the high degree of independence of involved parts:

1. the impossibility to provide a completely detailed specification of the
whole system behavior (including the private part of various agents),
that exposes anyway some non-deterministic properties and it is also
impossible to prevent the raising of exceptions or fault conditions, as
in any highly distributed environment;

2. the unsuitability of traditional transactional models ([Lit03]), both
for technical and business causes, and the necessity to employ weaker
definitions of concepts as atomicity, isolation, consistency, and other
transaction-related properties;

3. the high criticality level due to the (indirect) management of private
resources by external and autonomous parts;

4. the possibly of employ incomplete specifications (abstract or partially
specified) that are adapted to the execution context at run-time;

5. the adoption of highly distributed architectural model that does not
require a central coordination node (e.g., a peer-to-peer architecture).

Analysis and Verification It is the ability to analyze a service specification
expressed at a specific detail degree and verify if it is consistent with
a given set of constraints or whether some properties hold. This is a
foundational aspects that is relevant in many contexts and it is very useful
to cope with different service-related issues:

1. the high difficulty level of the testing and debugging of service-oriented
applications that involve external partners, e.g., service providers in-
cluded in a composition, that cannot be available at time of imple-
mentation;

2. the mismatching between business and technical requirements and
specification and, generally, their ambiguity and incompleteness;

3. the potential inconsistency among (private) processes that imple-
ments services provided to the community since they can generally be
realized by different actors in different periods (e.g., a legacy main-
frame terminal transaction can be exposed using e-service as well as
a new reasoning-enhanced network-accessible facility);

4. the need to ensure the consistency w.r.t. externally defined con-
straints, e.g., laws and regulations, that impose additional restric-
tions, independently from application constraints;

5. the requirement of negotiate the service contract both with providers
and clients and the need to ensure the respect of contract clauses;
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6. the requirement of stating the compatibility level of behavior exposed
by involved actors (at least, service client and provider);

7. the necessity of analyze and simulate the behavior of a composed ser-
vice in order to obtain elements to employ during the system capacity
planning and the tuning of computing infrastructure.

A.3 e-service equivalence

Among various issues related to service-oriented application development it is
of general interest the problem of defining and analyzing the equivalence, and
different kinds of compatibility too, between e-services.

In fact, the service equivalence is a notion that turns out to be rather rel-
evant in many scenarios: to address both the synthesis and the orchestration
problems, since it enables to deal with incomplete service specifications that will
be completely instantiated only during the enactment execution, to implement a
dynamic service provider lookup tool (e.g., fault-tolerance, context-awareness),
to minimize the complexity of a service (i.e., to compute the minimal equivalent
service specification), etc.. It can be articulated w.r.t. different aspects:

Specification Considering the specification, the service equivalence can be as-
sessed according different and heterogeneous criteria ([BCD+03]), in fact,
generally speaking, we can compare services w.r.t.: service schemas, ser-
vice implementations (i.e., the abstract components that implement the
exposed behavior), services instances (i.e., the concrete software compo-
nents, like XML web service, that are actually available).

Interface/Protocol Considering the component public interface and the mes-
sage exchanging protocol with other engaged actors (i.e., client, provider,
partner), that means that service are analyzed w.r.t. the signature of pub-
lished operations or, instead, the structure of exchanged message and the
language induced. Basically ([MB03]), services are considered compatible
if they are compatible in terms of operation signature, message structure
and conversation trace.

Function This aspect is related to an intensional semantics, that means that
two services can be assessed as compatible if they perform “similar” tasks
in different contexts, even exposing different cooperation interfaces, or
in other words, we are asking if two services performs that same busi-
ness function ignoring any context aspects. This kind of compatibility
definition is quite analogous to the compatibility among software compo-
nents/libraries that, despite they are accessible using different protocols,
can be interchanged using a suitable adaptation layer6.

Context This aspect is, instead, related to an extensional semantics, that
means that two services can be treated as equivalent according this crite-
rion if, even abstracting from the effective activation interface/protocol,
they can be employed to obtain a common family of concrete effects. In

6As we will show in the followings, the service composition problem can be treated as a
generalization of the interface adapter problem, i.e., given two service interfaces verify if a
suitable bridge exists.
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other words, two extensional compatible services can be replaced into pre-
serving the extension of possible enactment set. Such a property does not
necessarily hold for intensional equivalence, since we can define services
that perform similar tasks in different contexts and hence have different
enactment family extensions7. This is a typical aspect of service-oriented
applications, since while software components are generally considered
only as technical building block, an e-service is generally a software com-
ponent related the management to some non-computational resources, and
for this reason it is necessary to cope with the denotation of the applicabil-
ity scope of the service itself that is generally related to its organizational
deployment8. We remark also, that despite some initial attempts (i.e.,
[FLP+03]), this problem has not been adequately addressed, and avail-
able approaches are too specific to some applications or they are lacking
a suitable semantic foundation. It is also worth noticing that extensional
semantic characterization of a composed service derives from the exten-
sional semantic of involved services, and that while the composition can
be feasible w.r.t. the intensional semantics it cannot be also feasible once
the extensional contexts have been specified.

QoS/SLA Two services are considered as compatible if they ensure the same
quality levels assessed using a given criterion (e.g., the quality/price ratio).

A natural generalization of the service equivalence concept is the service
containment : a service “contains” another service it is a generalization according
to a given analysis dimension. In this case, from the order relation induced by
the containment is possible to derive equivalence classes using the antisymmetric
property.

Regarding this topic, the most relevant approaches are the ones based upon
the definition of service ontologies using languages as DAML-S and OWL-S and
their variations ([BHL+02, PC03, Gro03]): such an approaches use different
strategies to characterize the equivalence, but generally they assume equivalent
services that can implement the same conversations (roughly speaking, the ef-
fects of a service are the set of exchanged messages) or that have similar process
implementations ([MPC01, HB03]).

The syntactic approach relies on the definition of an adequate type system
to model service operation signature parameters, organized using complex data
structures and hierarchical domains. This method is limited by the fact that
in many situations the type system is only definable in highly abstract terms,
since it can be instantiated only at run-time. In fact, many planning-based ap-
proaches ([MS02, WSH+03, GTL00, APY+02]) introduce explicitly information-
gathering activities to dynamically get information about currently employed

7In terms of knowledge representation these aspects are mainly related to the extensional
part of the domain specification. Please notice that in high expressing knowledge represen-
tation languages, there is no strong separation of schema and data elements as in traditional
data representation approaches.

8For example, considering the technical perspective, in case of XML web services, an
e-service described using the WDSL generally specified also it deployment (i.e., end-point
URL). In other words, while other component-oriented architectures (e.g., DCOM, CORBA,
Java Enterprise Edition [JEE], .NET [NET]) are using the interface-description language to
denote a class of components, the corresponding construct in case of XML web service generally
denotes a deployed instance that probably manages its own context. Moreover WDSL allows
for a kind of abstraction by the mean of the port-type construct.
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service instances (i.e., reflection).
A quite similar solution, since it relies mainly on syntactic features, even

having different purposes, is presented in [Mar03]: the notion of service usability
is defined in order to denoted the property that a service can be included in the
definition of a process ensuring the correctness of the latter. Both the services
and the process are modeled as work-flow fragments.

In [PEZS02] the equivalence analysis problem is reduced to the verification
of compatibility of underlying business processes implemented by the organiza-
tion units aiming at implementing the cooperation: in fact, also in the case of
standard conversation protocols (e.g., EDIFACT, ebXML, RosettaNet) defining
in unambiguous manner syntax and semantics of exchanged messages, actually
implemented business processes can result to be incompatible requiring, hence,
a preliminary re-engineering (i.e., interconnected internal processes can easily
result into a non-safe global process). In order to encapsulate the internal busi-
ness process, hiding private implementation details, in [vdA03] is proposed an
approach relying on the notions branching bisimulation and work-flow inheri-
tance ([vdABry]): roughly speaking two process models are assumed as to be
“compatible” if they are indistinguishable by an external agent employing a
given message exchange protocol.

It is worth noticing, that also the matchmaking problem can be reduced
to the service equivalence analysis if the requirement is expressed as a service
example to which available service description should be compared (i.e., query-
by-example or case-based reasoning).

A.4 e-service composition

The service composition is another very interesting and articulated aspect that
is addressed in the field of service-oriented applications.

The composition or, in other words, the ability of integrating functional-
ities available by means of more services into another one that provided a
more sophisticated behavior to the user, can be analyzed w.r.t. different at-
tributes/properties:

Proactive/Reactive Attribute introduced in [CJ01], a proactive composition
is built in an off-line manner by a composed-service provided (service ag-
gregator), while a reactive composition is built at runtime given a specific
user request.

Mandatory/Optional engagement Also this property of service composi-
tion has been introduced in [CJ01], a service can need the participation
of an involved composing service as a necessary condition for a correct
execution. In the case of optional engagement, the service allows for the
unavailability or the withdraw of a partner without necessarily compromis-
ing the successful outcome of the running execution, despite a performance
degradation can arise.

Abstract/Concrete specification A service composition can be specified at
different levels of details and abstraction: a concrete specification requires
the exact denotation of execution steps and involved actors (i.e., service
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providers) at the design phase. On the other hand, an abstract specifica-
tion can leave some aspects not completely defined, requiring at runtime
some additional tasks, in order to locate and bind a service provider or
to instantiate some execution steps or their (optimal) activation sequence.
The ability to cope with an abstract composition is required since often at
the service design phase, there is no way to obtain all the required infor-
mation to exactly specify the execution plan9. This problem is also deeply
analyzed in the field of Management Sciences and Business Process Anal-
ysis and Reengineering as, e.g., in the methodology MERISE ([TRC86]),
where three different levels of specification are distinguished: conceptual,
logical, and implementation (physical/organizational).

Target complexity A composed service can be treated as an execution plan
designed in order to achieve a specific goal, expressed in terms of system
state, employing the involved composing services, or as the specification
of an orchestration strategy of these services that is consistent with their
constraints and allows the user to interact with a new service that com-
bines abilities of composing ones10. In other words, a composed service
with a simple target can be seen as a component that exposes at most a
single atomic operation, while a service with a complex target is charac-
terized by a more articulated operation set (i.e., interface) defining many
operations available to the client, but requiring also a more sophisticated
language to correctly specifying the execution constraints (e.g., a finite
state automaton as proposed in [BCD+03]).

Autonomy level A service can allow for different levels of autonomy of in-
volved partner in the execution of respective portion of an enactment
without compromising the availability of the service itself. This charac-
teristic is highly related to the notion of encapsulation and generally, since
the most level of autonomy should be ensured to actors, in order to reduce
the dependability among them, suitable approaches to fault-tolerance and
recovery must be implemented.

Centralized/Distributed coordination In a service composition we can dis-
tinguish between a flow of control messages exchanged among actors (con-
trol flow) and a flow of information-carrying messages (data flow), despite
this distinction can be often not explicitly stated. On this schema, in
[LLW02] 4 different patterns has been defined and analyzed: the key as-
pect is the existence of a central agent acting as broker/mediator of some
flows. In [HBCS03], moreover, a simplified classification in terms of hub-
and-spoke and peer-to-peer architectures has been also discussed.

Composition complexity The degree of composition complexity, in terms
of formal language constructs available during the design of composed
services, has been also introduced as classification attribute in [HS04].

9A composition is more abstract than another if it has a higher degree of parametricity
w.r.t. the information that is available only during the service enactment resulting from a
user request. In other words, some decisions are delegated to the service executor from the
designer.

10The degree of parametricity is expressed w.r.t. the set of options that are offered to
service client, e.g., in a composed service with a simple target, the requestor can only decide
to engage the service or not, while in a complex target service, it can control the enactment
evolution.
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Specification complexity This aspect, also introduced in [HS04], refers to
the expressiveness of specification language available to defining charac-
teristics and abilities of composing services.

We point out that these dimensions of classification are not completely mu-
tual orthogonal: e.g., a reactive service synthesis is generally associated to a
simple goal (i.e., a specific request about the system state has triggered the
enactment).

A.5 Reference scenarios

In the development of service-oriented applications it is interesting to classify
some reference scenarios that drive the research activity to elicit constraints and
requirements. A similar analysis is also available in [HHO04].

A summary of the analysis of main characteristics of proposed scenarios is
reported in Table A.1. We now briefly describe and discuss these cases.

WSC SOE WSB
Business standard Open Proprietary Proprietary

Technological standard Open Proprietary Open

Environment Public Private Mixed

Agreement Extempore Long term Medium/long
term

Encapsulation High Medium/low Medium/high

Wrapping On-
availability

On-demand

Negotiation Run time Never Design time

Management autonomy High Low Medium

Required features Search and
matchmak-
ing, simple
goal composi-
tion

Validation,
complex goal
composition

Dynamic
binding,
validation,
complex goal
composition

Table A.1: A comparison of various application scenarios

A.5.1 Web Service Customization (WSC)

Considering the e-commerce application context, the end-user is aiming to per-
form a specific task on the Internet using a new-generation web consisting both
of pages and services.

The user has defined a concrete goal, even it is only partially specified (e.g.,
(s)he will to organized a trip, book a hotel in a given period, but (s)he does not
explicitly state that (s)he will to pay for it), hence some necessary operations
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can be induced from domain constraints. Generally, the user goal is formalized
in terms of desired system final state property with some quality criteria (e.g.,
minimal cost solution) and the solution can be achieved selecting among a com-
munity of “equivalent” services that are extensionally suitable for the user goal.
In this scenario there is no explicit “procedural” specification available, despite
some relevant implementation patterns can be available.

According to this description, the foundational abilities required in this sce-
nario are: service directory search and selection (and generally catalog manage-
ment), matching, consistency checking and synthesis (even w.r.t. simple goals).
The agreement among parts is extempore, while the service quality level nego-
tiation is quite relevant (e.g., price selection). The conversation is implemented
by open standard protocol (i.e., the XML web service stack) and every actor
has a nearly complete autonomy.

An example of business-to-business version of this scenario, can be the on-
the-fly research of a shipping agent given the shipping data, the selection w.r.t.
ensured service levels, the condition negotiation the agreement definition, the
activation and the monitoring of the enactment.

A.5.2 Service-Oriented Engineering (SOE)

In this scenario, the end-user is the designer and developer of software appli-
cations in a SOA that aims at synthesizing a new service given available ones
generally in a private/restricted-access network environment.

In this case, the user goal can be expressed in a very detailed vary, but it is
essentially an abstract specification, since the required result is another software
component that exhibits a complex behavior once it is deployed. The execution
goal becomes concrete only at run-time, given a specific enactment, and hence
such a component must be also able to correctly instantiate abstract fragments
using available information. In a delimited and controller environment (i.e.,
in a EIS belonging to a single organization) accessed service can be treated as
“transparent”, that means that also implementation details are available and
that the matching can be performed also w.r.t. the private part.

Differently from a public network (i.e., the Internet), in a single EIS the
availability of a service can problematic since the wrapping activity is very
cost intensive and services are low generalizable, hence a legacy transaction is
exposed has a service only when it is required from at least another application
(on-demand). As consequence, catalog management, search and matchmaking
functions are rather important, despite they require a lower automation degree.

Also the consistency verification is an important but not critical feature,
while the availability of automatic synthesis and orchestration tools is essential.
The agreement is generally long-term and predefined with a limited requirement
of condition negotiation, moreover employed integration protocols can be pro-
prietary and there is a low autonomy degree, while the computing environment
is assumed as reliable and fault-tolerant.

This scenario is fairly similar to classical integration of EISs, where service-
related technologies aim at providing a higher degree of abstraction and flexi-
bility, in order to reduce long-term maintenance costs.
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A.5.3 Web Service Brokering (WSB)

Also in this scenario the end-user is designer/developer, but its task is aimed
at integrating services provided by other organizations (external services) in
order to implement a business partner integration or service marketplace (i.e.,
an environment where actors can trade their services and requests).

It is clearly a special version of previous scenario, characterized by the fol-
lowing properties:

1. given the privacy concern of involved partner, there no details about ser-
vice implementations;

2. similar services with different extensional coverage, as in the former case,
can be available.

The task goal is expressed in terms of complex service to synthesize, while
as in the case of customization, we need to take into account several domain
constraints to enforce. The designed composed services can eventually include
also lookup operations to select and bind provider instances during the run-
time (i.e., routing messages) while the SLA negotiation is done at design-time.
The partner agreement is defined at medium/long-term, while the degree of
autonomy is limited, since a minimal reliability degree of the integrated system
must be assured. In case of different service providing organization units having
a higher degree of autonomy, the SOE scenario can be reduced to this one.

A special case of service brokering is represented by the integration of e-
government services. In fact, in this kind of applications, it is typical the case
of many intensional equivalent services with different extensional applicability
scope, since many public administrations provide service to citizen on territorial
basis (e.g., city authorities, counties, administrative departments).
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Other approaches to

Service-Oriented Computing

In this appendix we discuss about other interesting approaches to formally cope
with issues arising in the design of a service-oriented system that are not directly
related to the subject of this Thesis.

B.1 Data Integration

The data integration framework ([Len02]) is a very general formal tool that can
be successfully employed in service-oriented application. In fact, information
gathering services (i.e., services that merely retrieve a specific information) can
be easily considered as a typical data source in a data integration schema. They
can be mapped to a reference data model and a user query can be mediated
among them, implementing the service integration in a very natural way.

However, service accessible data sources are generally not queriable in an
arbitrary way as a traditional DBMS: they have some access limitations and,
hence, some special techniques ([RSU95, FLMS99]) should be employed to deal
with them. In fact, e-services are generally employed to hide details about
implementation of information systems and also about the design of private
databases, thus it is very difficult (it is more assimilable to a business issue than
to a technical one) to obtain a free-query access to data. So, an informative e-
service is only able to return a result only providing a suitable input assignment
executing a sort of fixed parametric query.

In [PF02, TKAS02] two approaches based on data integration techniques
have been proposed to address the composition of information gathering ser-
vices: in the former a local-as-view framework using the MiniCon algorithm
([PL00]) is employed, while in the latter a global-as-view model is extended with
a forward-chaining mechanism to cope with source access limitations. Also the
usage of a discrimination matrix to select only service providers that are po-
tentially relevant in terms of their applicability extension has been proposed in
[TKAS02].
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Most notably, in spite of the fact that, as formal tools, data integration
frameworks can not satisfactory address issues related to dynamic features in the
design of service-oriented applications, we point out that, since, a preliminary
step in the construction of a service-enriched web is the information sharing,
they will eventually play a relevant role.

B.2 Linear Logics

The class of linear logics ([Gir87]) is a family of propositional logical languages
particularly suited for addressing problems related to planning and program
synthesis, since it is able to explicitly model (limited) resource usage.

In fact, several applications (e.g., [Kün02, KV01, GHS96]) of these languages
have been proposed in order to deal with domain-independent action plan syn-
thesis problems. As foundational tools, they can be generally, among other
applications, employed in many formal approaches to e-services based on plan-
ning techniques.

In [RS03] an approach to service composition is devised: it is essentially
based on a planning framework implemented using a theorem prover in linear
logic. More specifically, given a set of available services annotated using DAML-
S profiles, a DAML-S service process that implements a target specification (also
expressed as a DAML-S service profile) must be synthesized using them. The
problem is addressed translating the available service specifications in axioms of
a linear logic theory and the target service in a formula. The derivation of the
formula from the theory axioms can be translated back into the specification of
the required service process, in fact, differing from other inference systems, in
the case of linear logic, the structure of the derivation is fundamental: theorem
proofs are first-class object of this language. The inference procedure is based
on the check of type compatibility w.r.t. preconditions and postconditions ex-
pressed in service profiles, moreover, differing from other similar approach, in
this case it is possible to deal also with non-functional requirements (i.e., service
quality levels) and imposing constraints on admissible processes. In particular,
the devised approach is also able, given some ad-hoc inference rules, to deal with
functional attribute data domains. In fact, despite the model expressiveness is
restricted since propositional terms are only bound to data types (values are
ignored), it is also possible to model the application schema using a simplified
ontology expressing equivalence/containment relations at the extensional level1

A further generalization to distributed problem solution is presented in
[KM06b]: the reasoning framework is employed as a tool to implement a nego-
tiation protocol among cooperating agents. The application is not limited to
e-service analysis (in particular to e-service composition), but it is also relevant
in such a context.

The more interesting aspect of such a kind of logics is that the proof itself
of a theory (rather than the interpretation structure, as in many other cases)
can be interpreted in a dynamic fashion.

On the other side, as it has been shown in [EW90] and [EW93], there exists
also a link with linear logics and explicitly dynamic formal structures as Petri
nets. It that can be also exploited to build linear logics theorem prover using

1The model is a generalization of the one discussed in [FLP+03].
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tools devised in order to analyze these kind of structures.
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Technologies for Service-Oriented

Computing

In the following we present some observations about the some technologies,
currently employed in industrial solutions, that are related to issues addressed
in this work.

Given the large number of different platforms, architectures, communication
protocols, an exhaustive analysis is far beyond the scope of the present work.
Moreover, since we are mainly interested in formalization of properties to sup-
port the design and specification of this kind of applications w.r.t. dynamic
concerns, we are ignoring some very relevant topics as data and transaction and
management, security, fault tolerance, etc..

In other words, we are aiming to analyze the relation with some technologies
currently adopted in order to show how (and why) they are not completely
satisfactory in the implementation of a service-oriented application.

C.1 Component-based Software Development

The service-oriented computing paradigm in the field of Enterprise Application
Systems development, management and integration is a natural evolution of dis-
tributed component architectures (e.g., CORBA, Java EE). In particular, while
on a side several vendor-independent and possibly standard protocols (i.e., XML
web service stack) have been introduced to reduce middleware integration costs,
on the other hand, business process oriented design approaches have been de-
vised levering on mega-programming technologies and orchestration/messaging
tools.

According to the component-oriented perspective, as a generalization of
object-oriented approaches, while software components are a way to implement
e-service specializations, the latter can be considered as a tool to encapsulate
the former. Several proposed e-service matchmaking approaches, according to
[Pee03a], can be, in fact, reduced to similar proposal for component directory
and discovery
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But, from a wider perspective, the service-oriented paradigm is a strong
generalization and it cannot simply be assessed as a new middleware protocol
stack. In particular, we remark that:

• an e-service, differently from a software component (e.g., a software library,
a reusable module), can have a life-cycle completely independent from the
information system in which it is employed (i.e., extempore agreement). In
fact, the e-service can be managed by a totally autonomous organization
entity, that is in charge not only of the implementation of the module (i.e.,
as a reusable software piece), but also of the on-line providing. For exam-
ple, in the B2B integration scenario, a business partner is responsible for
the availability of shared services: in other words there is a dependability
relation among autonomous information systems.

• an e-service is inherently characterized by the extension of its own appli-
cation field (i.e., the served client/user community): in other words, it
cannot be merely denoted in intensional terms (i.e., provided functions),
but it need to specify also to which objects these capabilities can be ap-
plied.

• in the case of a service-oriented architecture there is a stronger emphasis
on the dynamic nature of integration binding, since it can be completely
defined only during a specific enactment. Given also the high concernment
of encapsulation and autonomy issues, the semantic of transactional oper-
ations must be accordingly refined introducing several alternatives w.r.t.
different participant commitments (i.e., atomic transactions and business
transactions).

Generally, considering component-oriented architectures and solutions, in
the case of e-service applications there are more relevant issues related to the
management of the conversation among different elements than those related to
the reuse, in particular, in the case of very flexible and dynamic integration and
incomplete specifications.

C.2 Work-flow Management Systems (WfMS)

The work-flow management paradigm has been widely adopted in many software
development contexts, in particular as base tool for the flexible implementation
of business process in many software platforms, but it is also the reference model
in the field of semantic e-services as foundational model for complex service
specification.

However, in the latter scenario, many issues can be pointed out:

• the reference architectural model adopted by a WfMS generally imposes
that a specialized (and privileged) node in the cooperative network acts
as orchestrator. While this assumption can be easily satisfied in scenarios
where the work-flow management technology has been more successfully
applied (i.e., the management of internal business process of an organiza-
tional unit, possibly involved in a macro-process), it cannot generally hold
in the case of automation of multi-organizational process fragments. More-
over, in the case of open network communities a peer-to-peer paradigm is
preferable.
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• the very dynamic design processes and execution environments, induced
by the requirements of very flexible connection and integration of service-
oriented applications, is not adequately addressed by work-flow specifica-
tion languages and models (e.g., the dynamic discovery and the selection
of a partner, the operation rescheduling), but it requires some ad-hoc
extensions.

• the highly distributed computational environment makes rather hard, gen-
erally, to unambiguously denote the owner” of the process instance that
implements a service enactment. In fact, each involved actor perceives
only it own projection of the process (i.e., the macro-process fragment).
This is a quite critical issue in the case of e-government applications, since
its legal implications (i.e., who is the liable for a response?).

• B2B-like integration scenarios, in particular cases of e-marketplaces and
virtual-enterprises, introduce other issues related to the security enforcing
and management (e.g., authentications, identity management), the pri-
vacy protection, the agreement negotiation, the service fees and payment,
generally not addressed in the process management models.

Moreover, despite approaches derived from work-flow management ([vdADtH03,
vdABC+07]) can deal with many inter-organizational issues, some peculiar as-
pects of e-service applications, in particular the denotation of extensional con-
text, have not been adequately addressed so far.

C.3 Intelligent Software Agents

The remarks noticed regarding the relationship between service-oriented com-
puting and component-based software construction can be easily extended by
analogy to the case of software agents. In fact, an e-service can be consid-
ered as the specification of the capabilities that a cooperating agent provides
to the computing environment, as the multi-agent technology can be a source
of useful design, integration and communication tools in the development of a
service-oriented application.

Moreover, in this case, w.r.t. the component-oriented platforms, multi-agent
technologies can deal with some typical characteristics of e-services (e.g., appli-
cability context, non-cooperative behavior, ephemeral agreement) in a more
natural way, since many of these aspects are also relevant in the modeling of
(intelligent) software agents.

On the other hand, we need also to point out that several of more inter-
esting solutions in this field are not enough mature (i.e., in terms of reliability
and scalability in presence of large-databases) to be actually employed in the
development of EAI or EIS solutions. Moreover, the high expressive power of
modeling languages developed in this area1, although it enable to cope with
involved problem specification, leads to high complexity/intractable computa-
tional problems, despite, in many cases, there are empirical tractability out-
comes (e.g., using Description Logic reasoners or AI planners). At the same

1The Semantic Web and related technologies essentially stem out from these one. The
DAML language has been, in fact, initially devised to model agent knowledge bases adopting
a frame-based paradigm.
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time, several issues concerning the data modeling (i.e., in the case of exchanged
information) are ignored ([Bat03]): in particular, regarding the representation
heterogeneity and the specification of constraints. Actually, there is any clear
evidence showing that these aspects are orthogonal/separable or, in other words,
it is possible to deal with behavioral and structural concerns (almost) indepen-
dently.
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